
DySAT: Deep Neural Representation Learning on Dynamic
Graphs via Self-Attention Networks

Aravind Sankar∗, Yanhong Wu†, Liang Gou†, Wei Zhang†, Hao Yang†
∗University of Illinois at Urbana-Champaign, IL, USA

†Visa Research, Palo Alto, CA, USA
∗asankar3@illinois.edu †{yanwu, ligou, wzhan, haoyang}@visa.com

ABSTRACT
Learning node representations in graphs is important for many
applications such as link prediction, node classification, and com-
munity detection. Existing graph representation learning methods
primarily target static graphs while many real-world graphs evolve
over time. Complex time-varying graph structures make it chal-
lenging to learn informative node representations over time.

We present Dynamic Self-Attention Network (DySAT), a novel
neural architecture that learns node representations to capture dy-
namic graph structural evolution. Specifically, DySAT computes
node representations through joint self-attention along the two
dimensions of structural neighborhood and temporal dynamics. Com-
pared with state-of-the-art recurrent methods modeling graph evo-
lution, dynamic self-attention is efficient, while achieving consis-
tently superior performance. We conduct link prediction experi-
ments on two graph types: communication networks and bipar-
tite rating networks. Experimental results demonstrate significant
performance gains for DySAT over several state-of-the-art graph
embedding baselines, in both single and multi-step link prediction
tasks. Furthermore, our ablation study validates the effectiveness
of jointly modeling structural and temporal self-attention.

CCS CONCEPTS
• Information systems→ Social networks; •Computingmethod-
ologies → Neural networks;

KEYWORDS
Dynamic Graphs, Self-Attention, Representation Learning

ACM Reference Format:
Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, Hao Yang. 2020.
DySAT: Deep Neural Representation Learning on Dynamic Graphs via Self-
Attention Networks. In The Thirteenth ACM International Conference on Web
Search and Data Mining (WSDM ’20), February 3–7, 2020, Houston, TX, USA.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3336191.3371845

∗Work done while at Visa Research

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
WSDM ’20, February 3–7, 2020, Houston, TX, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6822-3/20/02. . . $15.00
https://doi.org/10.1145/3336191.3371845

1 INTRODUCTION
Learning latent representations (or embeddings) of nodes in graphs
is a fundamental problem due to its prevalence in varied domains
including social media [22], bioinformatics [8], and knowledge
bases [36]. The objective is to learn low-dimensional vectors that
capture the structural properties of a node and its neighborhoods.
Such embeddings can benefit a plethora of applications, including
node classification, link prediction, and recommendation [8, 15].
Existing graph representation learning work primarily target static
graphs, which contain a fixed set of nodes and edges. However,
many real-world graphs are dynamic where graph structures con-
stantly evolve over time. They are usually represented as a sequence
of graph snapshots at different time steps [16]. Examples include
co-authorship networks where authors may periodically switch col-
laboration behaviors and email communication networks whose in-
teraction structures may change dramatically due to sudden events.

Learning dynamic node representations is challenging due to
the complex time-varying graph structures: nodes can emerge and
leave, links can appear and disappear, and communities can merge
and split. This requires the learned node representations to not
only preserve structural proximity but also jointly capture their
temporal evolution. In addition, multiple latent facets affect graph
evolution, e.g., in a co-authorship network, authors of different
research communities or at different career stages, may expand
their collaboration circles at varying rates. Latent facets such as
research community or career stage, serve as unique perspectives to
model temporal graph evolution. Thus, modelingmulti-faceted vari-
ations in dynamic graph representation learning is crucial towards
accurately predicting node properties and future links.

Existing dynamic graph representation learning methods mainly
fall into categories: temporal regularizers that enforce smoothness
of node representations from adjacent snapshots [39, 40], and recur-
rent neural networks [6, 9] that summarize historical snapshots via
hidden states. Smoothing methods while effective in high-sparsity
settings, may fail when nodes exhibit significantly distinct evo-
lutionary behaviors. Conversely RNNs, while expressive, require
large amounts of training data to outperform even static methods
and scale poorly with an increase in the number of time steps.

Attention mechanisms have recently achieved great success in
many sequential learning tasks [2, 37]. The underlying principle
is to learn a function that aggregates a variable-sized input while
focusing on the parts relevant to a given context. When a single
sequence is used as both the input and context, it is called self-
attention. Though attention mechanisms were initially designed to
facilitate Recurrent Neural Networks (RNNs) to capture long-range
dependencies, Vaswani et al. [33] demonstrate the efficacy of a pure

https://doi.org/10.1145/3336191.3371845
https://doi.org/10.1145/3336191.3371845

WSDM ’20, February 3–7, 2020, Houston, TX, USA A. Sankar et al.

self-attentional network in achieving state-of-the-art performance
in machine translation, while being significantly more efficient.

As dynamic graphs usually have periodical patterns such as re-
current links or communities, self-attentions can draw context from
all past graph snapshots to adaptively assign interpretable weights
for previous time steps. In this paper, we present a novel neural
architecture named Dynamic Self-Attention Network (DySAT), to
learn latent node representations on dynamic graphs. DySAT gen-
erates a dynamic node representation by joint self-attention along
two dimensions: structural neighborhoods and temporal dynamics.
Structural attention extracts features from local node neighbor-
hoods in each snapshot through self-attentional aggregation, while
temporal attention captures graph evolution over multiple time
steps by flexibly weighting historical representations. To model
multi-faceted variations in graph structures, we learn multiple at-
tention heads in both structural and temporal attention layers that
enable joint attention over different latent subspaces.

We conduct experiments on single-step and multi-step link pre-
diction, using four benchmarks of different sizes including two
communication networks [14, 21] and two rating networks [11].
Our results indicate significant gains (4.8% macro-AUC on average)
for DySAT over several state-of-the-art baselines and consistent
performance over time steps. We demonstrate the benefits of joint
structural and temporal attention through an ablation study and
visualize temporal attention weights to illustrate the capability
of DySAT in adapting to datasets with varying evolutionary trends.
We summarize the key contributions of this paper below:
• We propose a novel neural architecture named Dynamic Self-
Attention Network that utilizes joint structural and temporal
self-attention for dynamic graph representation learning.

• Wepropose amodular architectural design of DySATwith stacked
structural and temporal self-attentional layers, which enables
efficient computations compared with RNN-based solutions.

• We conduct a wide spectrum of experiments that demonstrate
consistently superior performance for DySAT over state-of-the-
art methods in single and multi-step link prediction tasks.

2 RELATEDWORK
Our work is related to representation learning on static graphs, dy-
namic graphs, and recent advances in self-attentional architectures.

Static graph embeddings. Early unsupervised graph represen-
tation learning work exploit spectral graph properties to perform di-
mensionality reduction [30]. To improve scalability, skip-gram was
utilized to learn node embeddings that maximize the likelihood of
co-occurrence in fixed-length randomwalks [8, 22, 23, 26]. Recently,
several graph neural network architectures have achieved tremen-
dous success, among which many methods are designed for super-
vised or semi-supervised learning tasks [3, 13, 19, 25, 26, 34]. Hamil-
ton et al. [10], Veličković et al. [35] extend graph convolutional
methods through trainable neighborhood aggregation functions,
to propose a general framework applicable to unsupervised graph
representation learning. However, these methods are not designed
to model temporal evolution in dynamic graphs.

Dynamic graph embeddings. Dynamic graphs are defined in
two common ways: snapshot sequence [16], which is a collection
of evolving graph snapshots at multiple discrete time steps; and

timestamped graph [31], which is a single graph with continuous-
valued timestamped links. Though snapshot-based methods may
be applied to a timestamped graph by suitably creating snapshots,
the converse is infeasible due to lack of fine-grained timestamps. In
this paper, we target representation learning over graph snapshots.

Existing dynamic graph embedding techniques fall into two
broad categories. Temporal smoothness methods ensure embedding
stability across consecutive time-steps [27, 40]. Zhou et al. [39] addi-
tionally use the concept of triadic closure as guidance in social net-
works. Goyal et al. [7] explore graph-autoencoders to incrementally
update node embeddings through initialization from the previous
step. However, these methods cannot capture long-range variations
in graph structure, and are inadequate when nodes exhibit vastly
differing evolutionary behaviors. Recurrent methods [6, 9] capture
temporal dynamics by maintaining hidden states to summarize his-
torical snapshots, and achieve state-of-the-art results on dynamic
link prediction. However, recurrent methods scale poorly with the
increase in number of time-steps and cannot model multi-faceted
graph evolution without encountering prohibitive costs. In con-
trast, DySAT captures the most relevant historical contexts through
efficient self-attentions, to learn dynamic node representations.

A related problem is representation learning in streaming graphs
where the objective is to improve efficiency over repeatedly re-
training static models, by proposing incremental temporal up-
dates [4, 17, 18, 38]. In contrast, our goal is to improve representation
quality by exploiting the temporal evolution of graph structure.

In the scenario of timestamped graphs, representative methods
include temporal random walks [20], and neural extensions of tem-
poral point-processes [31, 32, 42]. As discussed earlier, this scenario
is orthogonal to our setting and further, such techniques cannot be
applied to graph snapshots that lack fine-grained timestamps.

Self-attention mechanisms. Recent advances in many NLP
tasks have demonstrated the superiority of self-attention both in
efficiency and performance [28, 29, 33]. A related approach is Graph
Attention Network (GAT) [34], which employs neighborhood at-
tention for node classification on static graphs. We propose joint
self-attention on structural and temporal domains to learn dynamic
node representations that capture its evolving neighborhoods.

3 PROBLEM DEFINITION
We formally define the problem of dynamic graph representation
learning. A dynamic graph is defined as a series of observed static
graph snapshots, G = {G1, . . . ,GT } whereT is the number of time
steps. Each snapshot Gt = (V, Et) is a weighted undirected graph
with a shared node set V , a link set Et , and a weighted adjacency
matrixAt at time step t . Unlike some previous methods that assume
links can only be added in dynamic graphs, we also support removal
of links over time. Dynamic graph representation learning aims to
learn latent representations etv ∈ Rd for each node v ∈ V at time
steps t = {1, 2, . . . ,T }, such that etv preserves both the local graph
structures centered at v and its temporal evolutionary behaviors
such as link connection and removal up to time step t .

4 DYNAMIC SELF-ATTENTION NETWORK
In this section, we first present the major components or building
blocks of DySAT. As depicted in Figure 1, DySAT has three modules

DySAT: Deep Neural Representation Learning on Dynamic Graphs WSDM ’20, February 3–7, 2020, Houston, TX, USA

from its top to bottom: structural attention block; temporal attention
block; and graph context prediction. Our key innovation lies in
decoupling graph evolution into twomodular blocks, which enables
highly efficient computations of dynamic node representations.
The structural and temporal self-attention layers together model
graph evolution, and can realize graph neural networks of arbitrary
complexity through layer stacking. Finally, we present our proposed
neural architecture DySAT, built upon these modules.

4.1 Structural Self-Attention
The input of this layer is a graph snapshot G ∈ G and a set of
input node representations {xv ∈ RD ,∀v ∈ V} where D is the
input embedding dimension. The input to the initial layer is set as
one-hot encoded vectors for each node. The output is a new set of
node representations {zv ∈ RF ,∀v ∈ V} with F dimensions, that
capture the local structural properties in snapshot G.

Specifically, the structural self-attention layer attends over the
immediate neighbors of a node v (in snapshot G), by computing
attention weights as a function of their input node embeddings.
The operation of the structural attention layer is defined as:

zv = σ
(∑
u ∈Nv

αuvW
sxu

)
, αuv =

exp(euv)∑
w ∈Nv

exp(ewv)
(1)

euv = σ
(
Auv · aT [W sxu | |W

sxv]
)
∀(u,v) ∈ E

where Nv = {u ∈ V : (u,v) ∈ E} is the set of immediate neigh-
bors of node v in snapshot G;W s ∈ RF×D is a shared weight
transformation applied to each node in the graph; a ∈ R2D is a
weight vector parameterizing the attention function implemented
as feed-forward layer; | | is the concatenation operation and σ (·)
is a non-linear activation function. Note that Auv is the weight of
link (u,v) in the current snapshot G. The set of learned coefficients
αuv , obtained by a softmax over the neighbors of each node in
V , indicate the contribution of node u to node v at the current
snapshot. We use a LeakyRELU non-linearity to compute attention
weights, followed by an exponential linear unit (ELU) activation for
the output representations. We employ sparse matrices to efficiently
implement masked self-attention over neighbors, since αuv is zero
for all non-links in G. Thus, a structural attention layer applied on
a snapshot G outputs node embeddings, through a self-attentional
aggregation of neighboring node embeddings, which can be viewed
as a single message passing round among immediate neighbors.

4.2 Temporal Self-Attention
To further capture temporal evolutionary patterns in a dynamic
graph, we design a temporal self-attention layer. The input of this
layer is a sequence of representations for a particular node v at
different time steps. The input representations are assumed to suf-
ficiently capture local structural information at each time step,
which enables a modular separation of structural and temporal
modeling. Specifically, for each node v , we define the input as
{x1v ,x

2
v , . . . ,x

T
v },x

t
v ∈ RD

′

where T is the total number of time
steps and D ′ is the dimensionality of the input representations.
The layer output is a new representation sequence for v at each
time step, i.e., zv = {z1v , z

2
v , . . . , z

T
v }, z

t
v ∈ RF

′

with dimensionality

F ′. We denote the input and output representations of v , packed
together across time, by Xv ∈ RT×D

′

and Zv ∈ RT×F
′

respectively.
The key objective of the temporal self-attentional layer is to

capture the temporal variations in graph structure over multiple
time steps. The input representation of node v at time-step t , xtv ,
encodes the current local structure around v (equation 1) We use
xtv as the query to attend over its historical representations (< t),
tracing the evolution of the local neighborhood around v . In con-
trast to structural attention which operates on the representations
of neighboring nodes, temporal attention depends entirely on the
temporal history of each node, thus facilitating efficient parallelism
across nodes. The decoupling of local neighborhood and temporal
history of each node into independent layers, is one of the key
factors contributing to the efficiency of our model.

To compute the output representation of node v at t , we use
the scaled dot-product form of attention [33] where the queries,
keys, and values are set as the input node representations. The
queries, keys, and values are first transformed to a different space
through linear projection matricesWq ∈ RD

′×F ′

,Wk ∈ RD
′×F ′

and
Wv ∈ RD

′×F ′

respectively. We allow each time-step t to attend over
all time-steps up to and including t , to preserve the auto-regressive
property. The temporal self-attention function is defined as:

Zv = βv (XvWv), β
i j
v =

exp(ei jv)

T∑
k=1

exp(eikv)

,

e
i j
v =

(((XvWq)(XvWk)
T)i j

√
F ′

+Mi j

)
(2)

where βv ∈ RT×T is the attention weight matrix obtained by the
multiplicative attention function andM ∈ RT×T is a mask matrix
with each entry Mi j ∈ {−∞, 0} to enforce the auto-regressive
property. To encode the temporal order, we defineM as:

Mi j =

{
0, i ≤ j

−∞, otherwise

When Mi j = −∞, the softmax results in a zero attention weight,
i.e., βi jv = 0, which switches off the attention from time-step i to j.

4.3 Multi-Faceted Graph Evolution
By stacking structural and temporal self-attentional layers, our
approach can sufficiently capture a single type or facet of graph
evolution. However, real-world dynamic graphs typically evolve
alongmultiple latent facets, e.g., evolution of users’ movie-watching
preferences across different genres (such as sci-fi, comedy, etc.)
exhibit significantly distinct temporal trends. Thus, we endow our
model with expressivity to capture dynamic graph evolution from
different latent perspectives through multi-head attentions [33].

Multi-head attention, which creates multiple independent in-
stances of the attentional function named attention heads that oper-
ate on different portions of the input embedding, is widely utilized
to improve the diversity of attention mechanisms. This facilitates
joint attention over different subspaces through projections along
multiple latent facets. Multi-head attention also improves model
capacity and stability by avoiding prediction bias. We use multiple
attention heads in both structural and temporal layers:

WSDM ’20, February 3–7, 2020, Houston, TX, USA A. Sankar et al.

ℎ"#

Position embeddings

Position-aware Temporal Self-Attention

ℎ"$%& ℎ"$

Node embeddings

v

2 3

1

𝑡# v

2 3

1

𝑡$%&4

𝑝	# 𝑝	$%&

v

2 3

1

𝑡$4

𝑝	$

Structural Self-Attention Structural Self-AttentionStructural Self-Attention

…
… Feed forward

𝑒"$

Graph context prediction

Feed forward

𝑒"$%&

Graph context prediction

Feed forward

𝑒"#

Graph context prediction

𝑡$𝑡$%&𝑡& Timeline

ℎ"&

v

2 3

1

𝑡&

𝑝	&

Structural Self-Attention

Feed forward

𝑒"&

Graph context prediction

𝑡#

Figure 1: Neural architecture of DySAT: we employ structural attention layers followed by temporal attention layers. Dashed
black lines indicate new links and dashed blue arrows refer to neighbor-based structural-attention.

Structural multi-head self-attention: multiple attention heads
are computed in each structural attention layer (one per facet),
followed by concatenation to compute output representations.

hv = Concat(z1v , z
2
v , . . . , z

HS
v) ∀v ∈ V

where HS is the number of attention heads, and hv ∈ RF is the out-
put of node v after multi-head attention. Note that while structural
attention is applied independently at each snapshot, the parameters
of structural attention heads are shared across different snapshots.
Temporal multi-head self-attention: similar to the above set-
ting, multiple temporal attention heads (or facets) are computed
over historical time steps, to compute final node representations.

Hv = Concat(Z 1
v ,Z

2
v , . . . ,Z

HT
v) ∀v ∈ V

where HT is the number of temporal attention heads, and Hv ∈

RT×F
′

is the output of temporal multi-head attentions.

4.4 DySAT Architecture
In this section, we present our neural architecture DySAT for dy-
namic graph representation learning, that uses the defined struc-
tural and temporal self-attention layers as fundamental modules.
The input is a collection of T graph snapshots, and the outputs
are node representations at each time step. As illustrated in Fig-
ure 1, DySAT consists of a structural block followed by a temporal
block, where each block contains multiple stacked layers of the
corresponding layer type. The structural block extracts features
from higher-order local neighborhoods of each node through a self-
attentional aggregation and stacking, to compute intermediate node
representations for each snapshot. This sequence of node represen-
tations then feeds as input to the temporal block, which attends
over multiple historical time steps, capturing temporal variations
in the graph structure. The outputs of temporal block comprise the
set of final dynamic node representations, which are optimized to
preserve local graph context in each time step. In the rest of this
section, we describe each component of DySAT in detail.

Structural attention block. This module is composed of multi-
ple stacked structural self-attention layers to extract features from

nodes at different distances. We apply each layer on each graph
snapshot with shared parameters, as illustrated in Figure 1, to cap-
ture the local structure around a node at each time step.

Note that the embeddings input to a layer can potentially vary
across different snapshots. We denote the node representations
output by the structural attention block, as {h1v ,h2v , . . . ,hTv },htv ∈

RF , which feed as input to the temporal attention block.

Temporal attention block. First, we capture the ordering infor-
mation in the temporal attention module by using position embed-
dings [5], {p1, . . . ,pT },pt ∈ RF , which embed the absolute tempo-
ral position of each snapshot. The position embeddings are then
combined with the output of the structural attention block to obtain
a sequence of input representations: {h1v +p1,h2v +p2, . . . ,hTv +pT }
for node v across multiple time steps. This block also follows a sim-
ilar structure with multiple stacked temporal self-attention layers.
The final layer outputs pass into a position-wise feed-forward layer
to give the final node representations {e1v ,e2v , . . . ,eTv } ∀v ∈ V .

Graph context prediction. To enable the learned representations
to capture structural evolution, our objective function preserves the
local structure around a node across multiple time steps. We use the
dynamic representation of a node v at time step t , etv to preserve
local proximity around v at t . In particular, we use a binary cross-
entropy loss at each time step to encourage nodes co-occurring in
fixed-length random walks, to have similar representations.

L =
T∑
t=1

∑
v ∈V

(∑
u ∈Nt

walk (v)

− log
(
σ (< etu ,e

t
v >)

)
−wn ·

∑
u′

∈P tn (v)

log
(
1 − σ (< et

u′ ,etv >)
))

(3)

where σ is the sigmoid function, < . > denotes the inner product
operation, N t

walk (v) is the set of nodes that co-occur with v on
fixed-length random walks at snapshot t , P tn is a negative sampling
distribution for snapshot Gt (commonly defined as a function of de-
gree distribution), andwn , the negative sampling ratio, is a tunable
hyper-parameter to balance the positive and negative samples.

DySAT: Deep Neural Representation Learning on Dynamic Graphs WSDM ’20, February 3–7, 2020, Houston, TX, USA

Communication Rating

Attribute Enron UCI Yelp ML-10M

of Nodes 143 1,809 6,569 20,537
of Links 2,347 16,822 95,361 43,760
of Time steps 12 13 12 13
Table 1: Summary statistics of four datasets. Link counts in-
clude the number of snapshots containing each link, e.g., a
link that occurs in three snapshots, is counted thrice.

5 EXPERIMENTS
To analyze dynamic node embedding quality from different perspec-
tives, we propose three research questions to guide our experiments:
(RQ1) How does DySAT perform in comparison to state-of-the-art

static and dynamic graph representation learning methods
on single-step and multi-step link prediction tasks?

(RQ2) How does DySAT compare with existing work under link
prediction focused on new links and unseen nodes?

(RQ3) Are the proposed structural and temporal self-attentional
layers in DySAT effective, efficient, and interpretable?

5.1 Datasets
We experiment on four dynamic graphs including two communica-
tion and rating networks of variable sizes similar to [6, 7] (Table 1).

Communication networks. We consider two publicly avail-
able communication network datasets: Enron [14] and UCI [21]. In
Enron, the communication links denote email interactions between
core employees, while the links in UCI represent messages sent
between peer users on an online social network platform.

Rating networks. We examine two bipartite networks from
Yelp1 and MovieLens [11]. In Yelp, the dynamic graph comprises
links between users and businesses, derived from the observed
ratings over time. ML-10M consists of a user-tag interactions where
the links connect users with the tags they applied on certain movies.

5.2 Baselines
First, we present comparisons against several static graph embed-
ding methods to analyze the gains of using temporal information
for link prediction. To ensure a fair comparison, we provide access
to the entire history of snapshots by constructing an aggregated
graph up to time t , with link weights proportional to the cumulative
weight till t agnostic to link occurrence times.
• node2vec [8]: A static embedding method that employs second-
order random walk sampling to learn node representations.

• GraphSAGE [10]: An inductive node representation learning
framework. We evaluate different aggregators including GCN,
meanpool, maxpool, and LSTM, to report the best in each dataset.

• GraphSAGE + GAT [10, 34]: A variant of GraphSAGE with
Graph Attentional layer [34] as the aggregation function.

• GCN-AE [41]: GCN trained as an autoencoder towards link pre-
diction along the suggested lines of Zitnik et al. [41].

• GAT-AE [34, 41]: Similar GAT autoencoder for link prediction.
Second, we evaluate DySAT against the most recent dynamic graph
embedding baselines that operate on discrete snapshots:
1https://www.yelp.com/dataset/challenge

• DynamicTriad [39]: A dynamic graph embedding technique
that combines triadic closure with temporal smoothness.

• DynGEM [7]: A deep neural embedding method that incremen-
tally learn graph autoencoders of varying layer sizes.

• DynAERNN [6]: A deep neural network composed of dense and
recurrent layers to capture temporal graph evolution.
We use a held-out validation set (20% links) to tune model hyper-

parameters. We randomly sample 25% examples for training, use
the remaining 75% for testing, and report results averaged across 10
randomized runs, along with standard deviation. We train a down-
stream classifier using Hadamard Operator (etu ⊙ etv) to compute a
feature vector for a pair of nodes, as recommended by [8] unless
specified otherwise. Additional details on parameters and tuning
can be found in our technical report [24]. We implement DySAT in
Tensorflow [1] and use mini-batch gradient descent with Adam [12]
for training. Our implementation is publicly available2.

5.3 Link Prediction Comparison (RQ 1)
In this section, we conduct experiments on single-step and multi-
step link prediction (or forecasting). Using the node embeddings
trained on graph snapshots up to time step t , single-step link predic-
tion predicts the connections between nodes at time step t + 1. We
choose this task since it has been widely used [6, 7] in evaluating
the quality of dynamic node representations to predict the temporal
evolution of graph structures. In contrast, multi-step link prediction
predicts links at multiple time steps starting from t + 1.

5.3.1 Experimental Setup. Each model is trained on the input
snapshots {G1, . . . ,Gt }, to obtain the latest node representations.
For single-step link prediction, the latest embeddings {etv ,∀v ∈ V},
are used to predict the links at Gt+1, i.e., classifying each example
(node pair) into links and non-links. To evaluate link prediction,
we use a downstream logistic regression classifier with evaluation
examples from the links in Gt+1 and an equal number of randomly
sampled pairs of unconnected nodes (non-links) [8, 39].

For multi-step link prediction, the latest embeddings {etv ,∀v ∈

V} are used to predict links at multiple future time steps {t +
1, . . . , t + ∆}. In each dataset, we choose the last ∆ = 6 snapshots
for evaluation. Evaluation examples are created for each future time
step t + x (1 ≤ x ≤ ∆), by similarly sampling the links in Gt+x
and an equal number of randomly sampled non-links. Here, the
links formed by nodes that newly appear in the future evaluation
snapshots are excluded since most existing methods do not support
updates for new nodes. We use the Area Under the ROC Curve
(AUC) [8] metric to evaluate link prediction performance.

5.3.2 Single-Step Link Prediction. We evaluate the models at
each time step t by training separate models up to snapshot t and
evaluate at (t +1) for each t = 1, . . . ,T . We use micro and macro av-
eraged AUC as evaluation metrics. Micro-AUC is calculated across
the link instances from all the time steps while Macro-AUC is com-
puted by averaging the AUC at each time step. Our results (Table 2)
indicate that DySAT achieves consistent gains of 4–5% macro-AUC,
in comparison to the best baseline across all datasets. Considering
that the performance gain reported in other graph representation
learning papers [34, 35] is usually around 2%, this improvement
2https://github.com/aravindsankar28/DySAT

WSDM ’20, February 3–7, 2020, Houston, TX, USA A. Sankar et al.

Method Enron UCI Yelp ML-10M

Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC

node2vec 83.72 ± 0.7 83.05 ± 1.2 79.99 ± 0.4 80.49 ± 0.6 67.86 ± 0.2 65.34 ± 0.2 87.74 ± 0.2 87.52 ± 0.3
G-SAGE 82.48∗ ± 0.6 81.88∗ ± 0.5 79.15∗ ± 0.4 82.89∗ ± 0.2 60.95† ± 0.1 58.56† ± 0.2 86.19‡ ± 0.3 89.92‡ ± 0.1
G-SAGE + GAT 72.52 ± 0.4 73.34 ± 0.6 74.03 ± 0.4 79.83 ± 0.2 66.15 ± 0.1 65.09 ± 0.2 83.97 ± 0.3 84.93 ± 0.1
GCN-AE 81.55 ± 1.5 81.71 ± 1.5 80.53 ± 0.3 83.50 ± 0.5 66.71 ± 0.2 65.82 ± 0.2 85.49 ± 0.1 85.74 ± 0.1
GAT-AE 75.71 ± 1.1 75.97 ± 1.4 79.98 ± 0.2 81.86 ± 0.3 65.92 ± 0.1 65.37 ± 0.1 87.01 ± 0.2 86.75 ± 0.2

DynamicTriad 80.26 ± 0.8 78.98 ± 0.9 77.59 ± 0.6 80.28 ± 0.5 63.53 ± 0.3 62.69 ± 0.3 88.71 ± 0.2 88.43 ± 0.1
DynGEM 67.83 ± 0.6 69.72 ± 1.3 77.49 ± 0.3 79.82 ± 0.5 66.02 ± 0.2 65.94 ± 0.2 73.69 ± 1.2 85.96 ± 0.3
DynAERNN 72.02 ± 0.7 72.01 ± 0.7 79.95 ± 0.4 83.52 ± 0.4 69.54 ± 0.2 68.91 ± 0.2 87.73 ± 0.2 89.47 ± 0.1
DySAT 85.71 ± 0.3 86.60 ± 0.2 81.03 ± 0.2 85.81 ± 0.1 70.15 ± 0.1 69.87 ± 0.1 90.82 ± 0.3 93.68 ± 0.1

Table 2: Single-step link prediction results (micro and macro averaged AUC with std. deviation). We show GraphSAGE (de-
noted by G-SAGE) results with the best performing aggregators (∗, †, and ‡ represent GCN, LSTM, and max-pooling respec-
tively). DySAT achieves significant performance gains of 4.8% macro-AUC on average across all datasets.

1 3 5 7 9 11 13
Time steps

50

60

70

80

90

100

A
ve

ra
ge

 A
U

C

Enron

1 3 5 7 9 11 13
Time steps

60

70

80

90

100 UCI

1 3 5 7 9 11 13
Time steps

40

50

60

70

80 Yelp

1 3 5 7 9 11 13
Time steps

60

70

80

90

100 ML-10M

DySAT node2vec GraphSAGE GraphSAGE+GAT GCN-AE GAT-AE DynamicTriad DynGEM DynAERNN

Figure 2: Performance comparison of DySAT with different graph representation learning methods on single-step link predic-
tion: solid line denotes DySAT; dashed and dotted lines denote static and dynamic graph embedding baselines respectively.

7 8 9 10 11 12
Time steps

50

60

70

80

90

A
ve

ra
ge

 A
U

C

Enron

8 9 10 11 12 13
Time steps

60

70

80

90

100 UCI

7 8 9 10 11 12
Time steps

40

50

60

70

80 Yelp

8 9 10 11 12 13
Time steps

60

70

80

90

100 ML-10M

DySAT node2vec GraphSAGE GraphSAGE+GAT GCN-AE GAT-AE DynamicTriad DynGEM DynAERNN

Figure 3: Performance comparison of DySAT with different models on multi-step link prediction for the next 6 time
steps. DySAT outperforms competing baselines by a large margin, and maintains consistently high performance over time.

is significant. DynAERNN typically comes second-best, validating
the effectiveness of RNN-based methods for temporal modeling.
Comparative analysis of different methods yields several insights.

First, GraphSAGE often achieves comparable performance to
dynamic embedding methods across different datasets, despite be-
ing agnostic to temporal information. One possible explanation is
that GraphSAGE uses trainable neighborhood-aggregators while
existing dynamic embedding methods either employ skip-gram or
adjacency reconstruction methods for structural proximity. We con-
jecture that joint structural and temporal modeling with expressive
aggregators (e.g., multi-head attention), is responsible for the consis-
tently superior performance of DySAT on link prediction. Second,
node2vec maintains a consistent performance despite being agnos-
tic to temporal information, which indicates further improvements
to DySAT on applying second-order sampling techniques.

Further, we compare the AUC at each time step (Figure 2). We
find the performance of DySAT to be relatively more stable than
other methods. This contrast is pronounced in the communication
networks (Enron and UCI), where we observe drastic drops in
performance of static embedding methods at certain time steps.

5.3.3 Multi-Step Link Prediction. In this section, we evaluate
various models on multi-step link prediction over six evaluation
snapshots. From Figure 3, we observe a slight decay in performance
over time for all the models, which is expected. DySAT achieves
significant gains over the baselines and maintains a stable perfor-
mance over time, while static methods often exhibit large variations
due to their lack of temporal context. This demonstrates the capa-
bility of the temporal attention module to capture the most relevant
historical context, for predictions at each time step in the future.

5.4 Impact of New Graph Elements (RQ 2)
Dynamic graphs usually contain unseen nodes and links over the
course of temporal evolution. To investigate if DySAT can learn
effective representations for graph elements that do not appear in
previous snapshots, we analyze the sensitivity of different methods
for (single-step) link prediction on: new links and unseen nodes.

5.4.1 Link Prediction on New Links. We evaluate link predic-
tion only on the new links at each time step. A link is considered
new at time step t for evaluation if it is present in Gt+1 and has not

DySAT: Deep Neural Representation Learning on Dynamic Graphs WSDM ’20, February 3–7, 2020, Houston, TX, USA

Method Enron UCI Yelp ML-10M

Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC

node2vec 76.92 ± 1.2 75.86 ± 0.5 73.67 ± 0.3 74.76 ± 0.8 67.36 ± 0.2 65.17 ± 0.2 85.22 ± 0.2 84.89 ± 0.1
G-SAGE 73.92∗ ± 0.7 74.67∗ ± 0.6 76.69∗ ± 0.3 79.41∗ ± 0.1 62.25† ± 0.2 58.81† ± 0.3 85.23‡ ± 0.3 89.14‡ ± 0.2
G-SAGE + GAT 67.02 ± 0.8 68.32 ± 0.7 73.18 ± 0.4 76.79 ± 0.2 66.53 ± 0.2 65.45 ± 0.1 80.84 ± 0.3 82.53 ± 0.1
GCN-AE 74.46 ± 1.1 74.02 ± 1.6 74.76 ± 0.1 76.75 ± 0.6 66.18 ± 0.2 65.77 ± 0.3 82.45 ± 0.3 82.48 ± 0.2
GAT-AE 69.75 ± 2.2 69.25 ± 1.9 72.52 ± 0.4 73.78 ± 0.7 66.07 ± 0.1 65.91 ± 0.2 84.98 ± 0.2 84.51 ± 0.3

DynamicTriad 69.59 ± 1.2 68.77 ± 1.7 67.97 ± 0.7 71.67 ± 0.9 63.76 ± 0.2 62.83 ± 0.3 84.72 ± 0.2 84.32 ± 0.2
DynGEM 60.73 ± 1.1 62.85 ± 1.9 77.49 ± 0.3 79.82 ± 0.5 66.42 ± 0.2 66.84 ± 0.2 73.77 ± 0.7 83.51 ± 0.3
DynAERNN 59.05 ± 2.7 59.63 ± 2.7 77.72 ± 0.5 81.91 ± 0.6 74.33 ± 0.2 73.46 ± 0.2 87.42 ± 0.2 88.19 ± 0.2
DySAT 78.87 ± 0.6 78.58 ± 0.6 79.24 ± 0.3 83.66 ± 0.2 69.46 ± 0.1 69.14 ± 0.1 89.29 ± 0.2 92.65 ± 0.1

Table 3: Single-step link prediction results restricted to new links (micro and macro averaged AUC with std. deviation). All
methods achieve lower AUC scores in comparison to predicting all links; DySAT outperforms baselines on most datasets.

3 5 7 9 11 13
Time steps

40

50

60

70

80

90

A
ve

ra
ge

 A
U

C

Enron

3 5 7 9 11 13
Time steps

50

60

70

80

90

100 UCI

3 5 7 9 11 13
Time steps

40

50

60

70

80 Yelp

3 5 7 9 11 13
Time steps

60

70

80

90

100 ML-10M

DySAT node2vec GraphSAGE GraphSAGE+GAT GCN-AE GAT-AE DynamicTriad DynGEM DynAERNN

16 13 19 12 7 8 6 4 2
Number of new nodes

478 248 278 154 50 17 19 9 24 7 14
Number of new nodes

511 456 456 455 365 364 350 324 352 380
Number of new nodes

1530 1237 1205 1499 1237 2427 904 1071 868 1458 771
Number of new nodes

Figure 4: Performance comparison of DySAT with different graph embedding models on single-step link prediction restricted
to previously unseen new nodes at each time step. Despite the lack of historical context for an unseen node, DySAT outper-
forms competing baselines due to its ability to factor the temporal evolution of its neighbors to compute its representation.

previously appeared in Gt . Thus, the evaluation examples comprise
new links at Gt+1 and an equal number of random non-links.

Table 3 summarizes the micro and macro averaged AUC scores
for different methods on the four datasets. FromTable 3, we find that
all methods achieve lower AUC scores than the original setup of
using all links atGt+1, which is reasonable since accurate prediction
of new links at Gt+1 is more challenging than predicting all the
links at Gt+1. DySAT achieves consistent relative gains of 3–5%
Macro-AUC over the best baselines on most datasets, while being
inferior to DynAERNN on the yelp dataset. One possible reason is
that RNN-based methods are able to better predict new links due to
their limited history prioritization, especially in Yelp where most
links at each step are new. Overall, DySAT achieves consistently
superior performance over baselines on new link prediction.

5.4.2 Link Prediction on Unseen Nodes. In this section, we
analyze model sensitivity to previously unseen nodes that newly
appear at time t . A node is considered new at time step t in Gt ,
if it has not appeared (has no links) in any of the previous t − 1
snapshots. In this experiment, the evaluation set at time step t only
comprises the subset of links at Gt+1 involving the new nodes in
Gt and corresponding randomly sampled non-links. Figure 4 also
depicts the number of new nodes appearing at each time step.

From Figure 4, DySAT consistently outperforms other baselines,
demonstrating its ability to characterize previously unseen nodes.
Although temporal attention focuses on the latest embedding etv
due to absence of history, the intermediate structural representa-
tion htv receives back-propagation signals via temporal attention
on neighboring seen nodes, which indirectly affects the final embed-
ding etv . We hypothesize that this indirect temporal signal is one

of the reasons for DySAT to achieve improvements over baselines,
albeit its inability to exploit temporal context for unseen nodes.

5.5 Self-Attention Analysis (RQ 3)
Since self-attention plays a critical role in the formulation of DySAT,
we conduct exploratory analysis to study: effectiveness: how does
joint structural and temporal attention impact the performance
of DySAT?, efficiency: how efficient is self-attention in comparison
to existing recurrent models?, and interpretability: are the learnt
attention weights visually interpretable for humans?

5.5.1 Effectiveness of Self-Attention. We evaluate the effec-
tiveness of our self-attentional architecture DySAT in two parts:

• Structural and temporal self-attention. We conduct an abla-
tion study by independently removing the structural and tempo-
ral attention blocks from DySAT to create simpler architectures.
Note that removal of temporal attention block results in a model
that differs from static methods since the embeddings are jointly
optimized (Eqn. 3) to predict snapshot-specific neighborhoods,
however without any explicit temporal evolution modeling.
From the results (Table 4), we observe that in some datasets, di-
rect structural attention achieves reasonable results, while the
removal of structural attention consistently deteriorates perfor-
mance. In contrast to Table 2 where GAT-AE (structural attention
over time-agnostic neighborhoods) often performs inferior to
GCN-AE, here structural attention applied over snapshot-specific
neighborhoods, is shown to be effective. DySAT consistently out-
performs the variants with 3% average gain in Macro-AUC, vali-
dating our choice of joint structural and temporal self-attention.

WSDM ’20, February 3–7, 2020, Houston, TX, USA A. Sankar et al.

Method Enron UCI Yelp ML-10M

Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC Micro-AUC Macro-AUC

Original 85.71 ± 0.3 86.60 ± 0.2 81.03 ± 0.2 85.81 ± 0.1 70.15 ± 0.1 69.87 ± 0.1 90.82 ± 0.3 93.68 ± 0.1
No Structural 85.21 ± 0.2 86.50 ± 0.3 74.48 ± 0.3 81.24 ± 0.2 70.11 ± 0.1 67.85 ± 0.1 88.56 ± 0.2 90.34 ± 0.2
No Temporal 84.50 ± 0.3 85.68 ± 0.4 76.61 ± 0.2 79.97 ± 0.3 68.34 ± 0.1 67.20 ± 0.3 89.61 ± 0.4 91.10 ± 0.2

Table 4: Ablation study on structural and temporal attention layers (micro and macro AUC with std. deviation). DySAT (joint
structural and temporal attention) outperforms the ablation variants by a margin 3% Macro-AUC on average.

• Multi-head attention. To analyze the benefits of multifaceted
modeling via attention heads, we vary the number of struc-
tural and temporal heads in DySAT independently in the range
{1, 2, 4, 8, 16}, while keeping the layer sizes fixed for fairness.
From Figure 5, we observe that DySAT benefits from multi-head
attention on both structural and temporal attention layers. The
performance stabilizes with 8 attention heads, which appears
sufficient to capture graph evolution from multiple latent facets.

1 2 4 8 16
Attention Heads

60

70

80

90

M
ac

ro
-A

UC

Structural Attention

UCI
Yelp

1 2 4 8 16
Attention Heads

60

70

80

90 Temporal Attention

UCI
Yelp

Figure 5: Sensitivity analysis on the number of structural
and temporal attention heads in DySAT (UCI and Yelp).
Model performance stabilizes with 8 attention heads.

5.5.2 Scalability Analysis. In this section, we compare the scal-
ability of DySAT against state-of-the-art dynamic method Dy-
nAERNN, which uses an RNN to model dynamic graph evolution.
We choose this method since it is conceptually closest to our self-
attentional architecture, and outperforms other dynamic embed-
ding baselines. We compare training times by varying the temporal
history window, i.e., the number of previous snapshots used as
history. Figure 6 depicts runtime per epoch on ML-10M, using a
machine with Nvidia Tesla V100 GPU and 16 CPU cores.

DySAT achieves significantly lower training times than Dy-
nAERNN, e.g., the runtime per epoch of DySAT is 88 seconds with
a window size of 10 on ML-10M, in comparison to 723 seconds
for DynAERNN. Self-attention is easily parallelized across both
time as well as attention heads, while RNNs suffer due to the in-
herently sequential nature of back-propagation through time. Our
results demonstrate the practical scalability advantage for pure
self-attentional architectures over RNN-based methods.

1 2 3 4 5 6 7 8 9 10
Temporal History Window

0
100
200
300
400
500
600
700
800

Ti
m

e
pe

r E
po

ch
 (s

ec
s)

Scalability Comparison on ML-10M
DynAERNN
DySAT

Figure 6: Scalability comparison of DySAT with Dy-
nAERNN. DySAT is faster by nearly an order of magnitude.

5.5.3 Temporal Attention Visualization. We visualize the dis-
tribution of temporal attentionweights learned byDySAT on datasets
with distinct evolutionary behaviors. We consider two diverse
datasets UCI and Yelp: UCI is a communication network with pe-
riodically recurring user-user interactions, while Yelp is a rating
network where new users and businesses get added over time. Fig-
ure 7 visualizes a heatmap of the mean temporal attention weights
(averaged over all nodes) for the first 11 time steps.

1 2 3 4 5 6 7 8 9 10 11
Time step (history)

2
3

4
5

6
7

8
9

10
11

12
Ti

m
e

st
ep

 (p
re

di
ct

ed
)

UCI

1 2 3 4 5 6 7 8 9 10 11
Time step (history)

Ti
m

e
st

ep
 (p

re
di

ct
ed

)

Yelp

0.00

0.08

0.16

0.24

0.32

0.40

0.00

0.08

0.16

0.24

0.32

0.40

Figure 7: Heatmap of mean temporal attention weights on
UCI and Yelp. Attention weights are uniformly distributed
in UCI, while Yelp exhibits a bias towards recent snapshots.

In Figure 7, each row depicts the set of all attention weights over
historical time steps t1...tk−1 for predicting links at time step k . We
find the attention weights to be biased towards recent snapshots
in Yelp, while being more uniformly distributed in UCI. This ob-
servation conforms to the nature of graph evolution since rating
behaviors in Yelp tend to be bursty and correlated with events
such as restaurant opening, discounted sales, etc., while inter-
user communications in UCI typically span longer time intervals.
Thus, DySAT is able to learn different attention weight distributions
adaptive to the mechanism of real-world temporal graph evolution.

6 DISCUSSION
In DySAT, we stack temporal attention layers on top of structural
attention layers. We choose this design as graph structures are
not stable over time, which makes the converse option impractical.
Another potential design choice is applying self-attention along the
two dimensions of neighbors and time together following a strategy
similar to DiSAN [28]. In practice, this would be computationally
expensive due to variable number of neighbors per node across
multiple snapshots. We leave exploring other architectural choices
based on structural and temporal self-attentions as future work.

DySAT can be directly extended to incrementally learn embed-
dings in a streaming environment, enabling both computational
and memory efficiency. Our initial experiments indicate promising
results [24], and opens the door to exploration of self-attentional
architectures for incremental graph representation learning.

DySAT: Deep Neural Representation Learning on Dynamic Graphs WSDM ’20, February 3–7, 2020, Houston, TX, USA

7 CONCLUSION
In this paper, we introduce a novel self-attentional architecture
named DySAT for dynamic graph representation learning. Specif-
ically, DySAT computes dynamic node representations through
joint self-attention over the structural neighborhood and histori-
cal representations, thus effectively capturing temporal evolution
of graph structure. Our experimental results on four real-world
datasets indicate significant performance gains for DySAT over sev-
eral state-of-the-art static and dynamic graph embedding baselines.
An interesting future direction is exploring continuous-time gener-
alizations to incorporate more fine-grained temporal variations.

REFERENCES
[1] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, et al. 2016.
Tensorflow: Large-scale machine learning on heterogeneous distributed systems.
arXiv preprint arXiv:1603.04467 (2016).

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. 2015. Neural Machine
Translation by Jointly Learning to Align and Translate. In International Conference
on Learning Representations (ICLR).

[3] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. In Advances
in neural information processing systems. 3844–3852.

[4] Lun Du, Yun Wang, Guojie Song, Zhicong Lu, and Junshan Wang. 2018. Dy-
namic Network Embedding: An Extended Approach for Skip-gram based Network
Embedding.. In IJCAI. 2086–2092.

[5] Jonas Gehring, Michael Auli, David Grangier, Denis Yarats, and Yann N Dauphin.
2017. Convolutional sequence to sequence learning. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 1243–1252.

[6] Palash Goyal, Sujit Rokka Chhetri, and Arquimedes Canedo. 2018. dyngraph2vec:
Capturing network dynamics using dynamic graph representation learning. arXiv
preprint arXiv:1809.02657 (2018).

[7] Palash Goyal, Nitin Kamra, Xinran He, and Yan Liu. 2017. DynGEM: Deep Embed-
ding Method for Dynamic Graphs. In IJCAI International Workshop on Representa-
tion Learning for Graphs (ReLiG).

[8] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In Proceedings of the 22nd ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 855–864.

[9] Ehsan Hajiramezanali, Arman Hasanzadeh, Krishna Narayanan, Nick Duffield,
Mingyuan Zhou, and Xiaoning Qian. 2019. Variational graph recurrent neural
networks. In Advances in Neural Information Processing Systems. 10700–10710.

[10] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In Advances in Neural Information Processing Systems.
1024–1034.

[11] F Maxwell Harper and Joseph A Konstan. 2016. The movielens datasets: History
and context. ACM Transactions on Interactive Intelligent Systems (TIIS) 5, 4 (2016),
19.

[12] Diederik P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic opti-
mization. In International Conference on Learning Representations (ICLR).

[13] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In International Conference for Learning Representations
(ICLR).

[14] Bryan Klimt and Yiming Yang. 2004. Introducing the Enron Corpus. In CEAS
2004 - First Conference on Email and Anti-Spam, July 30-31, 2004, Mountain View,
California, USA.

[15] Adit Krishnan, Hari Cheruvu, Cheng Tao, and Hari Sundaram. 2019. A Modular
Adversarial Approach to Social Recommendation. In Proceedings of the 28th ACM
International Conference on Information and Knowledge Management. ACM, 1753–
1762.

[16] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2007. Graph evolution:
Densification and shrinking diameters. ACM Transactions on Knowledge Discovery
from Data (TKDD) 1, 1 (2007), 2.

[17] Jundong Li, Harsh Dani, Xia Hu, Jiliang Tang, Yi Chang, and Huan Liu. 2017.
Attributed network embedding for learning in a dynamic environment. In Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management.
ACM, 387–396.

[18] Xi Liu, Ping-Chun Hsieh, Nick Duffield, Rui Chen, Muhe Xie, and Xidao Wen.
2018. Streaming Network Embedding through Local Actions. arXiv preprint
arXiv:1811.05932 (2018).

[19] Kanika Narang, Chaoqi Yang, Adit Krishnan, Junting Wang, Hari Sundaram, and
Carolyn Sutter. 2019. An Induced Multi-Relational Framework for Answer Selec-
tion in Community Question Answer Platforms. arXiv preprint arXiv:1911.06957

(2019).
[20] Giang Hoang Nguyen, John Boaz Lee, Ryan A Rossi, Nesreen K Ahmed, Eunyee

Koh, and Sungchul Kim. 2018. Continuous-time dynamic network embeddings. In
3rd International Workshop on Learning Representations for Big Networks (WWW
BigNet).

[21] Pietro Panzarasa, Tore Opsahl, and KathleenM. Carley. 2009. Patterns and dynam-
ics of users’ behavior and interaction: Network analysis of an online community.
JASIST 60, 5 (2009), 911–932.

[22] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In Proceedings of the 20th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 701–710.

[23] Aravind Sankar, Adit Krishnan, Zongjian He, and Carl Yang. 2019. Rase: Rela-
tionship aware social embedding. In 2019 International Joint Conference on Neural
Networks (IJCNN). IEEE, 1–8.

[24] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2018.
Dynamic Graph Representation Learning via Self-Attention Networks. arXiv
preprint arXiv:1812.09430 (2018).

[25] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2017. Motif-
based Convolutional Neural Network on Graphs. CoRR abs/1711.05697 (2017).
arXiv:1711.05697

[26] Aravind Sankar, Xinyang Zhang, and Kevin Chen-Chuan Chang. 2019. Meta-
GNN: Metagraph Neural Network for Semi-supervised learning in Attributed
Heterogeneous Information Networks. In 2019 IEEE/ACM International Conference
on Advances in Social Networks Analysis and Mining (ASONAM). IEEE, 137–144.

[27] Purnamrita Sarkar and AndrewWMoore. 2006. Dynamic social network analysis
using latent space models. In Advances in Neural Information Processing Systems.
1145–1152.

[28] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi
Zhang. 2018. Disan: Directional self-attention network for rnn/cnn-free language
understanding. In Thirty-Second AAAI Conference on Artificial Intelligence.

[29] Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, and Xiaodong Shi. 2018.
Deep semantic role labeling with self-attention. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[30] Joshua B Tenenbaum, Vin De Silva, and John C Langford. 2000. A global geometric
framework for nonlinear dimensionality reduction. science 290, 5500 (2000), 2319–
2323.

[31] Rakshit Trivedi, Hanjun Dai, Yichen Wang, and Le Song. 2017. Know-evolve:
Deep temporal reasoning for dynamic knowledge graphs. In Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR. org, 3462–3471.

[32] Rakshit Trivedi, Mehrdad Farajtbar, Prasenjeet Biswal, and Hongyuan Zha. 2018.
Representation Learning over Dynamic Graphs. arXiv preprint arXiv:1803.04051
(2018).

[33] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems. 6000–6010.

[34] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2018. Graph attention networks. In International Confer-
ence on Learning Representations (ICLR).

[35] Petar Veličković, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,
and R Devon Hjelm. 2018. Deep graph infomax. arXiv preprint arXiv:1809.10341
(2018).

[36] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge
graph embedding by translating on hyperplanes. In Twenty-Eighth AAAI conference
on artificial intelligence.

[37] Adams Wei Yu, David Dohan, Minh-Thang Luong, Rui Zhao, Kai Chen, Moham-
mad Norouzi, and Quoc V. Le. 2018. QANet: Combining Local Convolution with
Global Self-Attention for Reading Comprehension. In International Conference on
Learning Representations (ICLR).

[38] Ziwei Zhang, Peng Cui, Jian Pei, Xiao Wang, and Wenwu Zhu. 2018. Timers:
Error-bounded svd restart on dynamic networks. In Thirty-Second AAAI Conference
on Artificial Intelligence.

[39] Lekui Zhou, Yang Yang, Xiang Ren, Fei Wu, and Yueting Zhuang. 2018. Dynamic
network embedding by modeling triadic closure process. In Thirty-Second AAAI
Conference on Artificial Intelligence.

[40] Linhong Zhu, Dong Guo, Junming Yin, Greg Ver Steeg, and Aram Galstyan. 2016.
Scalable Temporal Latent Space Inference for Link Prediction in Dynamic Social
Networks. IEEE Trans. Knowl. Data Eng. 28, 10 (2016), 2765–2777.

[41] Marinka Zitnik, Monica Agrawal, and Jure Leskovec. 2018. Modeling polyphar-
macy side effects with graph convolutional networks. Bioinformatics 34, 13 (2018),
457–466.

[42] Yuan Zuo, Guannan Liu, Hao Lin, Jia Guo, Xiaoqian Hu, and Junjie Wu. 2018.
Embedding Temporal Network via Neighborhood Formation. In Proceedings of
the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining. ACM, 2857–2866.

http://arxiv.org/abs/1711.05697

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Dynamic Self-Attention Network
	4.1 Structural Self-Attention
	4.2 Temporal Self-Attention
	4.3 Multi-Faceted Graph Evolution
	4.4 DySAT Architecture

	5 Experiments
	5.1 Datasets
	5.2 Baselines
	5.3 Link Prediction Comparison (RQ 1)
	5.4 Impact of New Graph Elements (RQ 2)
	5.5 Self-Attention Analysis (RQ 3)

	6 Discussion
	7 Conclusion
	References

