iForest: Interpreting Random Forests via Visual Analytics

Xun Zhao, Yanhong Wu, Dik Lun Lee, Weiwei Cui

Random Forest

Fraud Detection

Medical Diagnosis

Churn Prediction

Icons created by Anatolii Babii, Atif Arshad, and Dinosoft Labs from the Noun Project.

Background – Decision Tree

Background – Decision Tree

Background – Random Forest

Background – Random Forest

Background – Random Forest

Motivation – Random Forest

Random Forests are A+ predictors on performance but rate an F on interpretability

L. Breiman "Statistical modeling: The two cultures."

Interpretability

Interpretability

III Reveal the relationships between features and predictions

© Uncover the underlying working mechanisms

iForest: Interpreting Random Forests via Visual Analytics

iForest - Visual Components

Data Overview

Feature View

Decision Path View

iForest – Data Overview

Data Overview

Feature View

Decision Path View

Provide case-based reasoning

iForest – Data Overview

• Methods: confusion matrix and t-sne projection

iForest – Data Overview

• Methods: confusion matrix and t-sne projection

Default View

Reveal the relationships between features and predictions

• Methods: data distribution and partial dependence plot

each cell illustrates the statistics and importance of a feature

Feature A (numerical)

Data Overview

Feature View

Decision Path View

Order Uncover the underlying working mechanisms

• Goal: audit the decision process of a particular data item

• Decision Path Projection

• Feature Summary

• Decision Path Flow: layer-level feature ranges

Evaluation – Usage Scenario

• Two usage scenarios using the Titanic shipwreck and German Credit data

- Titanic shipwreck statistics:
 - 891 passengers and 6 features after pre-processing

- German Credit statistics:
 - 1,000 bank accounts and 9 features

Usage Scenario – Titanic

Evaluation – User Study

- Qualitative user study
 - 10 participants recruited from local university and an industry research lab
 - 10 tasks covering all important aspects in random forest interpretation
 - 12 questions related with iForest usage in a post-session interview

Task Completion Time (seconds)

Future Work

• Support other tree-based model such as boosting trees

• Support multi-class classification or regression

• Support random forest diagnosis and debug

iForest: Interpreting Random Forests via Visual Analytics

Yanhong Wu

Email: <u>yanwu@visa.com</u>

URL: http://yhwu.me

