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Figure 1. Using iForest to interpret random forests with Titanic dataset: (A) a Data Overview displaying an overview of how random
forests classify data; (B) a Feature View depicting the relationships between features and predictions from various perspectives; (C)
a Decision Path View revealing the underlying working mechanisms by enabling users to audit and compare different decision paths.
iForest allows users to interpret random forests from various perspectives. For example, users can compare the negative decision
paths (c1) against the positive ones (c2) to examine the most significant reasons for generating different results.

Abstract— As an ensemble model that consists of many independent decision trees, random forests generate predictions by feeding
the input to internal trees and summarizing their outputs. The ensemble nature of the model helps random forests outperform any
individual decision tree. However, it also leads to a poor model interpretability, which significantly hinders the model from being used in
fields that require transparent and explainable predictions, such as medical diagnosis and financial fraud detection. The interpretation
challenges stem from the variety and complexity of the contained decision trees. Each decision tree has its unique structure and
properties, such as the features used in the tree and the feature threshold in each tree node. Thus, a data input may lead to a variety
of decision paths. To understand how a final prediction is achieved, it is desired to understand and compare all decision paths in
the context of all tree structures, which is a huge challenge for any users. In this paper, we propose a visual analytic system aiming
at interpreting random forest models and predictions. In addition to providing users with all the tree information, we summarize the
decision paths in random forests, which eventually reflects the working mechanism of the model and reduces users’ mental burden of
interpretation. To demonstrate the effectiveness of our system, two usage scenarios and a qualitative user study are conducted.

Index Terms—Interpretable Machine Learning, Random Forests, Random Forest Visualization, Visual Analytics.

1 INTRODUCTION

Random forests, an ensemble machine learning model that consists
of many independent decision trees, are widely adopted for classifi-
cation and regression tasks. Each tree in a random forest model is
trained independently on a random subset of the training data and a
random subset of features. Then, given a testing data input, random

• X. Zhao and D. Lee are with the Hong Kong University of Science and
Technology. E-mail: {xzhaoag, dlee}@ust.hk

• Y. Wu is with Visa Research. E-mail: yanwu@visa.com
• W. Cui is with Microsoft Research Asia and is the corresponding author.

E-mail: weiwei.cui@microsoft.com

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

forests generate the final prediction by feeding the input to all deci-
sion trees and summarizing their results. Random forests have been
extensively studied in the machine learning and data mining areas for
many years [10] and proved to perform well in many domains, such
as biomedical engineering [17] and traffic planning [25]. One exhaus-
tive study [20] evaluates the performances of 179 classifiers stemming
from different families on the UCI classification database, and shows
that random forest classifiers overall outperform other classifier fami-
lies, such as neural networks and support vector machines (SVM).

Despite their impressive prediction performance, one critical issue
for random forests is interpretability. Although this issue is shared
by most machine learning models, it is especially severe for random
forests. According to Brieman et al. [11], “random forests are A+
predictors on performance” but “rate an F on interpretability”. Thus,
random forests are usually considered as black boxes [44], and the “F-
grade” interpretability has prevented the model from being adopted in



some domains that have little or zero tolerance of errors, such as finan-
cial lending, criminal justice, and medical diagnosis. As any machine
learning models may provide erroneous predictions [15], data scien-
tists in these domains need to understand how a particular prediction
is reached and examine whether the model works properly. For in-
stance, in medical diagnosis settings, data scientists usually develop
machine learning models to assist doctors in making treatment deci-
sions. However, a doctor can barely trust the model without under-
standing how it generates the prediction, as blind trust can be catas-
trophic for patients [15, 47]. Similarly, in the financial domain, failed
loan applicants usually want to know the exact reasons why their loan
applications have been rejected.

One popular approach to interpret classification models is to ob-
serve the relationships between features and predictions using methods
like partial dependence plots (PDPs) [21, 22]. Although these meth-
ods can illustrate how feature values affect predictions, they fall short
when it comes to random forests. In a random forest model, each tree
represents a self-consistent prediction strategy, which can easily be
interpreted using PDPs. However, a random forest model often con-
tains tens or hundreds of independent decision trees. Since the same
feature is likely being treated differently in different trees, forest-level
analysis helps users better understand which range of feature values is
strongly related to which predictions. However, it is difficult to extend
the existing methods to provide an overview of a large number of trees.

Apart from revealing feature-prediction relationships, uncovering
the underlying working mechanism is another critical perspective for
interpreting machine learning models [34], including random forests.
This helps users examine whether the trained model works properly,
and hence gain confidence in the generated predictions. To fully under-
stand the working mechanism of random forest models, users should
be able to audit a prediction and track the decision process, so that
they can determine if the prediction is reliable based on their domain
knowledge [58]. For a single decision tree, users can easily audit its
working mechanism by tracing the root-to-leaf decision paths. How-
ever, users need to compare hundreds of different decision paths for
a particular prediction in random forests, which is a time-consuming
and labor-intensive process.

Another important strategy for interpreting machine learning mod-
els is case-based reasoning. Based on the idea of solving problems by
analogy [34], case-based reasoning facilitates users to determine their
confidence in the prediction of a given data input by providing simi-
lar data examples as references [15, 28]. Popular case-based reasoning
methods used in general machine learning models are usually based on
model proximity [14] or feature similarity [57]. Unfortunately, neither
of them incorporates the fact that random forests generate predictions
through partitioning the training data. Since each partition corresponds
to a path in the forest, similarities between decision paths may provide
valuable insights to help users understand why a prediction is made.
However, existing reasoning methods fail to provide data examples.

The above challenges hinder data scientists from various domains
in using random forests to solve their problems due to the lack of in-
terpretability. To tackle these challenges, we develop iForest, an in-
teractive visualization system, to help users interpret random forests
from different perspectives. First, we build a Feature View to illus-
trate the relationships between input features and outcome predictions.
To uncover the underlying working mechanism of random forests, we
propose a novel design that summarizes several decision paths based
on feature appearances and ranges, which allows users to explore and
understand the partition logics of these paths. We also support the
case-based reasoning for random forest models and predictions from
the perspective of both feature similarity and decision path similarity.
Specifically, our contributions are summarized as follows:

• An interactive visualization system, iForest, that assists users in
interpreting random forest models and predictions.

• A novel pixel-based bar chart design that summarizes the fea-
tures and corresponding ranges in multiple decision paths to un-
cover the underlying working mechanism of random forests.

• Two usage scenarios and a qualitative user study that demon-
strate the usefulness and effectiveness of iForest.

2 BACKGROUND

Algorithm 1 Random Forest Construction

Input: X = {x1,x2, ...,xN}, F = { f 1, f 2, ..., f M}, Y = {y1,y2, ...,yN}
Output: RF = {T1, ...,TK}

for k= 1 to K do
Draw a bootstrap sample D′ of size N by sampling N times with

replacement from the training data X and initializing a decision tree
Tk with one root node.

repeat the following steps recursively for each terminal node v
of tree Tk.

1. Select m features randomly from F , where m < M.

2. Pick the best splitting feature fv from the m features.

3. Find the best splitting threshold θv for fv and split v into two
child nodes.

until the number of nodes in tree Tk reaches a certain threshold.
end for

Formally, given the input data X = {x1, ...,xN} where N is the size
of training data, we consider xi = {x1

i , ...,x
M
i } as the input vector of

the ith data item with M features F = { f 1, ..., f M}. In this work, we
focus on binary classifiers and consider the data label Y = {y1, ...,yN}
as binary categorical variables where yi ∈ {0,1} is the label of the
ith data item. A random forest model RF = {T1, ...,TK} can be built
using Algorithm 1 in which Tk represents a decision tree and K is the
total number of trees. To assist the discussions in the rest sections, we
introduce the following terms.

Split Point: For each node v in a decision tree, the split point sv
refers to a feature fv and a threshold θv that are used to split node v
into two child nodes. We pick the split point sv that partitions the Nv
training samples into left child vL and right child vR to maximize the
decrease of node impurity. In our paper, we measure the node impurity
using Gini impurity [24].

Decision Path: Given an input data item, each decision tree will
identify a root-to-leaf path (decision path) accordingly, which leads to
the prediction made by the tree. Assuming a decision path p contains
H non-leaf nodes V (p) = {v1, ..,vh, ..,vH},

it can be represented as:

p = {(x fv1
⊗

θv1),(x
fv2

⊗
θv2), ...,(x

fvH
⊗

θvH )} (1)

where fvh is the feature, θvh is the corresponding threshold, and
⊗
∈

{“≤ ”,“ > ”} represents the boolean condition on each node vh.
Prediction Score: For one data instance xi, we define the prediction

score of the k th decision tree Tk as Tk(xi) ∈ [0,1]. A prediction score
that is close to 0 or 1 indicates a high prediction confidence while a
prediction score close to the threshold represents a low prediction con-
fidence. The predicted label σ(Tk(xi),θ)∈ {0,1} can be then obtained
by setting certain predicted score threshold θ ∈ [0,1]. If the score is
larger than θ (by default 0.5), the predicted label is positive, other-
wise negative. A random forest generates the final prediction by either
taking the majority vote of {σ(Tk(xi),θ)|1≤ k ≤ K} or averaging the
prediction scores of all its internal trees, i.e., σ(∑K

k=1 Tk(xi)/K,θ).

3 RELATED WORK

3.1 Random Forest Interpretation
Random Forest interpretation methods can mainly be divided into 3
groups: feature analysis, model reduction, and case-based reasoning.

Feature Analysis. One simple but effective approach in this cate-
gory is to calculate feature importance [10, 13, 24], which assigns each
feature a score to indicate its impact on resulting predictions. The fea-
ture importance is often evaluated based on either the Mean Decrease
Accuracy (MDA) [10] or the Mean Decrease Impurity (MDI) [13].
MDA is a model-agnostic method that randomly permutes the values
of a feature, and then measures how much the prediction accuracy de-
creases. Unlike MDA that can be used for any model, MDI [37] is



specialized for tree-based models. It calculates the average decreased
impurity (e.g., Gini impurity [24]), which determines the feature and
its split point for each node in a decision tree [37]. Both MDA and
MDI can be either applied globally on an entire dataset to reveal the
overall feature importance [10] or calculated on a single prediction
for a more detailed examination [43, 44]. Although they have been
proven effective by various studies [37], MDI is more popular in ran-
dom forest analysis [24]. Therefore, we choose MDI as our feature
importance measure in this paper. Apart from feature importance, an-
other powerful tool for illustrating the relationships between features
and predictions is partial dependence plots (PDPs) [21, 22], which de-
pict how feature value changes affect predictions. Typically, a PDP is
visualized as a line chart, where the x-axis represents feature values
and the y-axis shows prediction probabilities. Prospector et al. [30] re-
cently introduces another heatmap-based design to represent PDPs, in
which the color encodes prediction probabilities. This design is more
space-efficient and allows the comparison of multiple features at the
same time. However, one major drawback of the above methods is that
they all ignore the split points in tree nodes. These thresholds depict
random forests’ partition criteria for each feature and can provide in-
sights into which ranges of features are regarded critical by the trained
model for predictions. We encode the feature threshold information
which enables users to perceive these important feature thresholds.

Model Reduction. It is a post-hoc interpretation method that learns
a surrogate model to approximate the original complex ensemble
model. Surrogate models are often simple and interpretable, such as
decision trees [48, 60], decision rules [16, 23], and decision sets [32].
For example, Schetinin et al. [48] propose a method that evaluates the
uncertainty of all trees in a random forest model and then select the one
that has the highest confidence and accuracy as the surrogate model.
However, in this approach, the structure of the surrogate tree depends
on the model parameters, which means it can still be too complex for
humans to interpret. Apart from surrogate trees, some other work also
learns other models, such as decision rules [16], which may have sim-
pler structures. Though model-reduction methods provide a simplified
overview of the working mechanism of random forests, when users
need to examine a specific prediction, these methods are usually not
accurate enough to reflect the model’s actual behavior as they summa-
rize the structures and properties of all the decision trees. When con-
sidering a specific prediction, only the decision paths that are decided
by the input data item are related to the working logic. Compared to
model reduction-based methods that approximate all the trees’ struc-
ture and property information, showing decision paths for a particular
prediction can accurately and flexibly reflect the working logic of ran-
dom forests. Thus, we summarize the decision paths to uncover the
underlying working mechanisms of random forests instead of model
reduction-based methods.

Case-based Reasoning. This methodology relies on the intuition
that a new problem can be solved by summarizing the solutions of
similar problems. This aligns with the analogical decision making
process of humans [29, 40], which has been widely adopted in various
real-world applications, such as the medical [8] and the financial [33]
domains. In the random forests scenario, case-based reasoning is of-
ten used to justify the reliability of predictions [14, 34]. Given a data
item and its prediction, training data that are most similar to the input,
along with their predictions, are collected first. Then, by comparing
their feature and prediction differences, users can better understand
and judge whether this prediction is reliable based on their knowledge.
Common measures, such as Euclidean distance or Cosine distance in
the feature space, are often adopted to compare different data items.
In addition, specialized measures, such as the prediction score [14] or
the number of common leaf nodes reached [51], can also be used as
distance functions for calculating data similarities in random forests.
These measures examine data similarity from the model’s perspective,
which helps inspect whether the trained model ignores some features
or assign high weights on other features. Since the two types of mea-
sures evaluate the similarity from different perspectives, we utilize
both of them in our system for users to better understand and judge
a prediction.

3.2 Tree-based Model Visualization

In this section, we review existing work on decision tree and tree en-
semble visualizations.

Decision trees can be visualized using different visualization tech-
niques, such as node-link diagram [41, 56, 59], icicle plot [6, 36, 54],
and Treemap [38, 49]. As a natural representation of tree structures,
node-link diagrams are widely adopted in visualizing decision trees.
In addition to tree structures, BaobabView [53] further encodes more
information of models, such as the split point in each node and the
training data volume that passes through each branch. Although node-
link diagrams can clearly depict tree structures, they may not scale
well when trees become deep and complex. A more space-efficient
way to visualize decision trees is icicle plots [31], in which the nodes
are encoded by multiple stacked bars. The length of each bar is propor-
tional to the volume of data which passes through the corresponding
node. To further encode the label distribution of each node, Ankerst
et al. [7] adopt a pixel-based design that uses pixels to represent data
items and pixel colors to represent the data labels. This pixel-based
design enables users to evaluate whether each node can successfully
partition data with different labels. Muhlbacher et al. [38] also use the
pixel-based design on Treemap to help users estimate the complexity
and performance of a decision tree. Although existing methods are
effective in visualizing decision trees, they are not designed for ran-
dom forests. In random forests, it is difficult or even impossible for
humans to understand and compare the structures and properties of all
decision trees. For each decision tree, only one decision path is related
to a specific data item and showing the entire tree structures may con-
fuse users as it includes too much unrelated information. In this paper,
we choose to visualize the decision paths that are used in a specific
prediction instead of the whole tree structures to illustrate the working
mechanism of random forests and reduce users’ mental burden.

Apart from visualizing individual decision trees, many methods
also attempt to visualize different perspectives of tree-ensemble mod-
els. One perspective is the relationships between data and decision
trees. Breiman and Wald [12] use random forest proximity as the sim-
ilarity measure and adopt Multi-dimensional Scaling (MDS) to visual-
ize training data, so that users can intuitively observe data clusters and
outliers identified by the random forest model. Ploński et al. [45] use
Self-Organizing Map (SOM) instead of MDS to achieve higher accu-
racy. Another perspective is the relationships between features and de-
cision trees. Urbanek et al. [52] adopt a matrix-based visualization that
illustrates the feature importances on each tree, which enables users to
compare feature similarities in a fine granularity. One drawback of
these methods is that they still consider random forests as a black box
and ignore the structures and properties of decision paths that reflect
the model’s working mechanism. Analyzing the similarities between
decision paths can answer many questions that are critical for predic-
tion interpretation. For example, among all the decision paths for a
data item, how many of them generate positive predictions and what
are the prediction scores of these decision paths? To overcome this
drawback, in addition to exploring the data similarity and feature cor-
relations, we visualize different properties of decision paths to reveal
how random forests generate predictions. Liu et al. [35] propose an
interactive visual diagnosis tool to analyze the performance of boost-
ing trees, which are a tree ensemble model similar to random forests.
They also design a temporal confusion matrix that visualizes the class
confusions of all trees to help users analyze and diagnose boosting tree
models. However, they do not help users understand how the model
makes predictions and inspect a specific prediction. In our work, we
focus more on understanding how random forests make predictions
and observing prediction quality rather than model diagnosis such as
comparing the effects of different model parameter settings.

4 DESIGN GOALS

Based on a thorough literature review of 35 papers collected from
the machine learning, visualization and human-computer interaction
fields, we distilled the following design goals to guide the system de-
velopment. Further details are provided in supplementary materials.



G1: Reveal the relationships between features and predictions.
To make random forests transparent, users first need to understand
what the model has learned in general and be able to evaluate the
model’s predictions [34]. In training stages, random forests basically
learn the mappings between input features and outcome predictions.
Thus, these mappings reflect model behaviors and can facilitate users
in understanding the characteristics of random forest models. For ex-
ample, users may want to know which features are considered impor-
tant by models and measure their influences (positive or negative) on
predictions. Users can then understand whether a small change in fea-
ture values can alter the prediction [30]. From the features’ influences
on predictions, users can further infer the feature correlation and re-
move unnecessary features. Thus, revealing the relationships between
features and predictions is beneficial in interpreting random forests.

G2: Uncover the underlying working mechanisms. Opening the
black box of random forests not only requires revealing the relation-
ships between features and predictions, but also needs to uncover the
underlying working mechanisms [34]. Users should be able to audit
the decision process of a prediction and make sure they agree before
making a decision [9]. For example, doctors may need to understand
the model’s prediction on a specific patient to evaluate whether this
prediction is appropriate so that they can take further actions. This
helps users examine whether the model works properly and under-
stand why a specific prediction has been reached [58]. For random
forests, the overall working logic can be described by the structures
and attributes of individual decision trees. For example, the split point
of each tree node depicts the feature threshold of different predictions.
Analyzing the root-to-leaf decision paths can help answer many ques-
tions in random forest interpretation. For instance, what are the sim-
ilarities among the decision paths that generate the same prediction?
What are the major differences for two decision paths to generate dif-
ferent results? For each decision path, what is the prediction and how
certain is the prediction? By summarizing the structure and attributes
of different decision trees, we aim to uncover the underlying working
mechanisms of random forests.

G3: Provide case-based reasoning. Case-based reasoning is a cru-
cial part of the most effective strategies in decision making scenar-
ios. [28]. It relies on the idea that a new problem can be solved based
on the summarized solution of similar problems [29]. These similar
problems can serve as a scaffold for understanding and solving a new
problem. This helps provide a holistic picture of random forests such
as observing the model performance, examining which types of data
the model tends to predict incorrectly, or identifying feature impor-
tance and impact. Similarly, when interpreting random forests, users
can evaluate the prediction of a new case by comparing it with similar
examples from the training data [14]. However, providing case-based
reasoning for random forests is more complex than other models, since
the random forests can have various similarity metrics. For example,
the similarity metric for random forests can be calculated based not
only on feature value distance, but also on how many common leaf
nodes are reached [13, 51]. Thus, the similar cases of a testing case
can vary according to different similarity metrics. Providing different
sets of similar cases is beneficial as it helps users evaluate the predic-
tion from various perspectives.

5 ANALYTICAL TASKS

To fulfill the design goals, we have distilled the following design tasks.
T1: Encode feature importance and partial dependence infor-

mation. According to the definition, feature importance reflects the
depth of a feature in decision trees and the amount of data partitioned
by the feature threshold. Thus, it is a popular measure to help users
understand which features are decisive to predictions [24]. However,
such information is not sufficient to reveal how feature values and
predications are correlated (G1), because feature importances cannot
demonstrate how feature values affect final predictions. To address
this issue, the partial dependence information should also be exam-
ined, since it demonstrates how predictions respond to feature changes.
Through the partial dependence information, users can judge whether
changing a feature value slightly would strongly affect the prediction

so that they can evaluate the robustness of the model or a specific pre-
diction. Therefore, the system should encode both the feature impor-
tance and the partial dependence information of features.

T2: Encode the split point distribution of each feature. As dis-
cussed above, the split point distribution is another piece of critical
information to reveal the relationships between input features and out-
put predictions (G1). A feature range with dense split points suggests
the prediction is sensitive to values in this range (i.e., this range has a
high impact on predictions). On the other hand, if a feature range only
has a few and sparse split points, this may indicate that the feature
has little influence on predictions. Therefore, visualizing the density
information helps reveal different ranges’ effects on predictions.

T3: Encode the prediction results and summarizing the similar-
ities of decision paths. To understand how a prediction is generated
from random forests (G2), users often need to dig into all decision
paths that jointly produce the final prediction. Showing the diversity
of interim predictions helps users evaluate the uncertainty of the fi-
nal prediction. In addition, the similarities of decision paths can pro-
vide a good overview of their relationships. For example, users may
want to know which groups of decision paths produce positive results
and which decision paths have similar structures in general. Hence,
to deepen the understanding of the working mechanism of random
forests, it is important to expose how interim predictions are gener-
ated and the final consensus is reached when given a data input.

T4: Review structures of decision paths. Each decision path has
a unique structure, including the path length, the features appeared on
the path, the order of the appeared features, and the split threshold in
each node. Although two decision paths may yield the same predic-
tion, their structures are likely to be very different. These structures
can provide deeper insights into the underlying working mechanisms
of random forests (G2) [26, 34]. For example, users may be interested
in whether there are any common feature thresholds among the deci-
sion paths that generate the same prediction. Users may also want to
understand what the major differences between the paths that lead to
opposite predictions. Thus, our system should summarize the struc-
tures of decision paths and enable users to examine their differences.

T5: Identify training data clusters and outliers. To support case-
based reasoning (G3), users should be able to identify clusters and
outliers from the training data. This can provide concrete examples
for users to analyze the behaviors of models. For examples, users can
observe whether certain data clusters are likely to have the same pre-
diction result. Some data instances with high prediction confidences
may also be incorrectly predicted by models. In addition, data out-
liers may indicate data noises, which can be removed from the training
dataset to improve model performances. We aim to provide users with
an overview of the training data and enable them to compare ground
truth labels and prediction results.

T6: Encode training data value distribution. This distribution is
useful for both feature analysis (G1) and case-based reasoning (G3).
On one hand, it can reveal the relationships between features and
predictions in a finer granularity (G1). For example, comparing the
predictions of data in different feature ranges can help users analyze
which feature ranges have stronger impact to predictions. On the other
hand, the training data value distribution can also serve as evidence
when observing partial dependence information and split point distri-
bution. For example, if a numerical feature range has a low split point
density, users need analyze whether this is because the data are sparse
or this range of the feature is not considered important by the model
based on the feature value distribution. Thus, encoding the distribution
is useful for both feature analysis (G1) and case-based reasoning (G3).

T7: Support interactive model inspection. All three design goals
listed above require our system to provide interactive model inspec-
tion. During the inspection process, users may want to examine why
a group of data is incorrectly predicted. For example, they may exam-
ine the feature value distributions of the data group to check which
features are responsible for the errors (G1). Sometimes users are
more interested in exploring a single prediction interactively, rather
than understanding the random forest model as a whole. When in-
specting a single prediction, users may want to compare several deci-



sion paths for a deeper understanding of the model’s working mecha-
nism (G2), or examine the predictions of similar examples in the train-
ing data (G3). Therefore, the system should support users to interac-
tively inspect the model and individual predictions.

6 SYSTEM OVERVIEW

Motivated by the above design goals and tasks, we designed iForest,
an interactive visual analytics system, to allow users to interpret ran-
dom forest models. Our system consists of three major components:
data processing, model building, and visual analysis. In the first mod-
ule, we clean the raw datasets, conduct feature engineering, and store
the processed data. The model building module trains a random forest
model based on the processed data and calculates the similarity ma-
trix for training data. These two modules are developed using Python.
Specifically, we use scikit-learn [4] to build random forests and lever-
age a Python web framework, Flask [2], to build the back-end. The
visual analysis module, which is the front-end of our system, consists
of three major views to support different design tasks with rich inter-
actions. We utilize D3 [1] in this visual analysis module.

7 VISUAL DESIGN

As shown in Fig. 1, iForest contains three major views: 1) the Data
Overview which enables users to identify clusters and outliers from the
training data and summarizes the model’s performance on these data;
2) the Feature View which depicts the relationships between features
and predictions from various perspectives; 3) and the Decision Path
View which aims to help users inspect a single prediction by summa-
rizing and comparing all the corresponding decision paths. We also
provide a Control Panel to let users customize their own testing data
and feed them into iForest for understanding and evaluating the pre-
dictions. A rich set of interactions is also provided to link these views
together to allow a dynamic exploration.

7.1 Data Overview
The Data Overview allows users to explore training data and their
prediction results, so that users can have concrete examples to under-
stand what the model has learned and how the model performs on the
dataset. Common multi-dimensional data visualization techniques in-
clude parallel coordinate plots (PCP), scatterplot matrices (SPM), and
dimension reduction techniques. PCP and SPM can accurately display
multi-dimensional data and reveal dimension correlation while they
are not space efficient when the number of dimensions is large. In
contrast, dimension reduction methods have good scalability but one
drawback is that the distances between points in the projected space
may not accurately represent the distances in the original space. As
we design the Data Overview mainly for users to obtain an overall
picture on data clusters and outliers (T5), we select dimension reduc-
tion methods to display the training data for a better scalability. Then,
we draw a confusion matrix to help users observe the model’s perfor-
mance on these data and enable users to filter certain data subsets (T7).
Finally, we display a data table that allows users to easily browse the
whole training dataset.

This view may have the visual clutter problem, which is a common
drawback for many dimension reduction-based visualizations. To al-
leviate this issue, we adopt an overlap removal algorithm [18] to in-
crease the distances between overlapping circles. We further support
zooming and panning to help users focus on a specific region in the
view.

The confusion matrix is illustrated as four horizontal rectangles
at the top. The rectangle width encodes the size of the correspond-
ing category, while the color and texture represent different predic-
tion categories. For example, true positives are illustrated in deep
blue, and false positives are represented in light blue with stroke tex-
ture (Fig. 1A). Similarly, true negatives and false negatives are visual-
ized in red. Compared with the traditional 2×2 matrix-based design,
our design is more space-efficient and enables users to quickly com-
pare the sizes of different prediction categories. Users can click on
a rectangle to filter a category of data instances. The opacity of the
corresponding circles below is set to zero, while we keep the strokes
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Figure 2. Feature View’s visual encoding for (a) numerical and (b) cate-
gorical features. The upper parts show the split point density and partial
dependence information and the lower parts illustrate the feature value
distribution.

of them to provide contextual information. In the lower part, actual
feature values are shown in a table to allow users to quickly browse
and select a data instance for inspection.

7.2 Feature View
Since random forest models are a mapping from input features and
output predictions, revealing the relationships between features and
predictions can help analyze what models have learned from training
data and facilitate the understanding of models. For example, users
may want to know which features are most important for a model and
how feature values affect predictions (T1). In addition, the split point
distribution of each feature (T2) and the training data value distribu-
tion (T6) also reflect the relationships between features and predic-
tions. Therefore, we design the Feature View to reveal such informa-
tion and facilitate users’ understanding of random forest models.

Visual Encoding. The Feature View visualizes feature information
as a list (Fig. 2), in which each row represents a feature. Features
are sorted based on the Gini importance (Sec. 2). The design of each
feature row contains two parts as shown in Fig. 2a. The upper part dis-
plays the partial dependence information and split point distribution,
while the bottom part shows the training data distribution. These two
parts share an x-axis, which represents the current feature values in
ascending order of Gini importance (from left to right).

In the upper part, we use a line chart to represent the partial de-
pendence plots and a pixel-based bar chart to encode the split point
distribution. For a feature f m ∈ F = { f 1, f 2, ..., f M}, let C = F−{ f}
to be the complement set of f , the partial dependence is calculated as:

PDPf m(α) =
1
N

N

∑
i=1

RF(xC
i ,x

m
i = α) (2)

where N denotes the size of training data, function RF(x) represents
random forest models that take the training data as input and output
the prediction in the form of probability. The partial dependence cal-
culates the average value of prediction f of all the training data, while
xC

i is fixed but setting the value of feature m to α for each data item.
The y-axis represents the predictions of the model and the values that
range from 0 to 1 are in ascending order from bottom to top. Since
we focus on binary classification in this paper, we set the threshold
to 0.5 so that the prediction is positive when value is larger than 0.5
and negative otherwise. Although we support both numerical and or-
dinal data, the line chart has different visualization formats for these
two types of features (Fig. 2b). For numerical data, the partial depen-
dence information is illustrated as a continuous line chart; for ordinal
data, it is displayed as discrete horizontal lines. To help users better
evaluate predictions, we use a gray dashed horizontal line to highlight
the threshold (0.5 by default). Thus, if the curve is above the dashed
line, it indicates that the prediction is positive, otherwise negative. To



allow users explore the effect of features on the predictions at differ-
ent scales, we support switching between two scales of y-axis. The
default scale of y-axis is ranging from 0 to 1, which is useful for users
to directly evaluate which features have large effect on the prediction.
Another scale of y-axis ranges from the minimum to the maximum
prediction of each particular feature, which allows users to examine
the relations between a specific feature and the predictions in details.
In addition, we draw a pixel-based bar chart at the top of the line chart
to represent the split point density in which the bar height encodes the
number of split points at this position. In the bottom part, we use the
bar charts to represent the feature value distributions and the inverted
y-axis represents the feature value, where the feature value increases
from top to bottom. The length of each bar represents the number of
data items with the corresponding feature value.

Design Alternatives. When designing the Feature View, we con-
sidered several alternatives. We considered heatmap and line charts
in designing the partial dependence plots. We chose line charts over
heatmap, because users may feel difficult to perceive small differences
in heatmap [39]. In order to maintain a consistent design, we chose
histogram to obtain the coherent visualization style. In addition, we
have considered to overlay the partial dependence plot on the value
and split point distributions. Though this design is space-efficient, we
abandoned it for several reasons. First, the design would cause occlu-
sion problems that users may have difficulty in perceiving the partial
dependence information and the size of training data in the same fea-
ture value range. In addition, the overlapping of histograms and the
plots may lead to interpretation errors. Therefore, based on the above
reasons, we select our design as the final design choice.

7.3 Decision Path View
Users usually need to flexibly audit the decision process of a predic-
tion before making final decisions (T7). When auditing a prediction,
the interim predictions and the corresponding prediction scores (T3)
are an important aspect to examine. Moreover, each interim predic-
tion has a unique decision path, thus summarizing and comparing the
structures of various decision paths can provide deeper insights into
the underlying working mechanisms (T4). Thus, this view is designed
to help users audit, summarize, and compare decision paths. The De-
cision Path View (Fig. 1C) is a list in which all decision paths of a pre-
diction is represented as a row. Specifically, each row contains three
major visual components: 1) the Decision Path Projection that pro-
vides an overview of all decision paths in a single prediction based on
their similarities, 2) the Feature Summary that summarizes the critical
feature ranges of decision paths, and 3) the Decision Path Flow that
provides the detailed information of decision paths layer by layer.

Algorithm 2 Decision Path Distance

Input: Decision Paths pi, p j, Feature list F = { f 1, f 2, ..., f M}
Output: Distance disti j

for each feature f m in F = { f 1, f 2, ..., f M} do
if f m not in Fpi and f m not in Fp j then

continue
else if f m not in Fpi or f m not in Fp j then

disti j = disti j +1
f eature cnt = f eature cnt +1

else
disti j =

1
2 (|θ

f m,l
pi −θ

f m,l
p j |+ |θ

f m,u
pi −θ

f m,u
p j |)

f eature cnt = f eature cnt +1
end if

end for
disti j = disti j/ f eature cnt

Decision Path Projection. Since a single prediction in random
forests is generated based on the results of many individual deci-
sion paths, we aim to provide users with an overview of these de-
cision paths (T3). Similar to the Data Overview, we use t-SNE to
project all the decision paths onto a 2D plane (Fig. 3a) as circles so
that users can easily observe their similarities. The pairwise distances

of decision paths can be calculated according to the feature ranges.
Specifically, for a root-to-leaf decision path p (Eq. 1) of a data in-
stance x = {x1,x2, ...,xM}, a feature may occur multiple times in the
decision path. Let the set of features used in path p be Fp ⊆ F =

{ f 1, f 2, ..., f M}. For each f n ∈ Fp, we can merge the ranges of f n on
the path to [θ

f n,l
p ,θ

f n,u
p ], where θ

f n,l
p = Max{θth | fth = f n,

⊗
= “ >

”, th ∈ t(p)}, and θ
f n,u
p = Min{θth | fth = f n,

⊗
= “≤ ”, th ∈ t(p)}.

To generate the t-SNE embedding, we normalize the feature range
to [0,1]. The normalized feature range of the path can be written as:

p = {[θ f n,l
p ,θ

f n,u
p ] | f n ∈ Fp} (3)

We can calculate the pairwise decision path distance in Algorithm 2.
We also considered including feature orders when measuring deci-

sion path distances. The advantage of including feature orders is that
the calculated distance can better represent the dissimilarities between
decision paths with less information loss. However, this approach may
position two decision paths with similar features apart from each other
due to the order effect. As the Decision Path Projection mainly aims
at providing an overview of decision path similarity to guide users for
further exploration, we exclude feature orders when calculating de-
cision path distances to better cluster the paths that share a common
feature set. Users can further compare the feature orders of different
decision paths using the Decision Path Flow component.

As in the Data Overview, we use a red-to-blue divergent color
scheme to encode the prediction score, from negative to positive. On
top of the Decision Path Projection, we also draw a divergent bar and
use the bar width to indicate the number of decision paths with positive
or negative labels. User can click on a circle or draw a lasso (Fig. 3f)
to add the corresponding decision paths to the Feature Summary and
Decision Path Flow for further exploration.

Feature Summary. For the decision paths that have been se-
lected in the Decision Path Projection, their features and correspond-
ing ranges are summarized in Feature Summary. Specifically, each
feature occurred in the selected paths is represented using a Feature
Cell in a list format (Fig. 3b). Users can scroll the list when the num-
ber of features listed is large. Feature Cell is a pixel-based bar chart
design (Fig. 3d) that summarizes the feature ranges of multiple deci-
sion paths on feature f . We use the same categorical color scheme of
the Feature View to represent different features. The x-axis represents
feature values in ascending order from left to right, and the y-axis
encodes the number of decision paths in which their feature ranges
covers this value. We also draw a vertical gray bar to encode the cur-
rent data instance’s value x f . From the height of the bar chart, we can
estimate which ranges of the feature are considered critical.

Decision Path Flow. The Decision Path Flow aims at revealing the
structures and properties of multiple decision paths at the layer level.
This enables users to examine the orders of the features appeared in
different decision paths, which is critical in measuring feature impor-
tance. As shown in Fig. 3c, each column represents a layer, in which
the layer depth increases from left to right. Similar to the Feature
Summary, we use Feature Cells to summarize features and the corre-
sponding ranges of nodes from the same layer. This helps users exam-
ine how the feature ranges of different decision paths evolve from the
root layer to the leaf layer. If a layer contains leaf nodes, we append a
pie chart in the corresponding column, where the red sector represents
negative labels and the blue sector represents positive labels (Fig. 3e).
The pie chart radius encodes the number of decision paths that have
leaf nodes at this layer and the sector angle encodes the ratio of the
paths of the corresponding label. We draw curves to connect features
from different layers. The curve width encodes the number of decision
paths that have the corresponding feature pair in adjacent layers.

8 EVALUATION

In this section, we describe two usage scenarios and a qualitative user
study that demonstrate the effectiveness of iForest. The dataset de-
scriptions and user study materials, such as task description, question-
naires, and study results, can be found in our supplemental materials.
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8.1 Usage Scenario I
In this usage scenario, we describe Daniel, a machine learning begin-
ner, utilizes iForest to investigate which groups of people were likely
to survive in the Titanic shipwreck and how random forests make the
corresponding predictions. The label to predict is Survival, a binary
variable in which survival is marked as positive. Daniel first performs
feature engineering on the training data [5] which contains 891 pas-
sengers, to combine similar or redundant features together for model
simplicity and robustness. He generates six features, namely, Sex, Ti-
tle, Fare, PClass, Age, and Family Size, to train a random forest model.

Daniel loads the trained model into iForest and he first examines
the Feature View to investigate which features are more critical for
survival. As Sex ranks top in the Feature View (Fig. 1B), Daniel recog-
nizes that Sex is the most important feature related to predictions (T1).
From the partial dependence plots, he also observes that passengers
tend to survive when Sex = 0 (female) but not to survive when Sex = 1
(male). This suggests that the model’s learned pattern aligns with the
fact that female passengers indeed are more likely to survive in the
Titanic shipwreck [27].

Apart from categorical features like Sex, Daniel likes to further
understand the relationships between prediction labels and numer-
ical features, such as Fare and Age. Comparing Fare with Age,
Fare’s split points are mainly located at the beginning of the x-
axis (Fig. 1b1) while the split points of Age are distributed more
evenly (Fig. 1b2) (T2). This suggests when examining Fare, the ran-
dom forest model mainly checks if the values are smaller than a certain
threshold. In contrast, there are no significant thresholds for predic-
tions when examining Age. To examine the relationships between fea-
tures and predictions, Daniel switches the y-axis of partial dependence
plot from global scale to local scale. He finds that there is a steep curve
in Fare’s partial dependence plot around the value 25 (Fig. 1b3). To
discover the differences between the passengers divided by the thresh-
old, Daniel hovers on the corresponding bar charts to highlight and
compare the feature value distribution of the passengers in different
Fare ranges (T7). He identifies that passengers with Fare > 25 are
usually from the first class and are more likely to survive than passen-
gers with Fare < 25 from the lower classes.

After examining the feature-prediction relationships learned by the
random forest model, Daniel explores the Data Overview to analyze
whether the random forest model fits the training data well and cap-
tures the characteristics of the training data. Daniel identifies several
clusters (Fig. 1A) with different colors (T5). For example, cluster a2
and a3 are both encoded with dark red color, which indicates these
passengers are predicted as non-survival by the model with high con-
fidences. By hovering over the circles and observing their feature
values, Daniel finds that these passengers are mainly male from the
third class. Apart from cluster a2, Daniel also identifies six outliers
(Fig. 1a1) with light yellow color (T5). He discovers that these out-
liers are also third class male passengers but their Fares are 56. To
examine whether the model produces correct predictions on these six
passengers, Daniel filters out True Negatives and discovers that these

six passengers are False Negatives, which indicates that they survived.
To analyze the reasons why the model generates predictions on

these passengers with a low confidence, Daniel clicks one of the six
circles to add this passenger (ID = 664) to the Decision Path View
for further examination. Fig. 1c2 shows that, apart from the many
red circles that represent the decision paths with negative predictions,
there are also some blue circles that represent positive predictions in
the Decision Path Projection (T3). To explore the working mechanism
differences between the positive and negative predictions of this pas-
senger, Daniel first draws a lasso around the red circles to explore the
decision paths with negative predictions (Fig. 1c1). He also adds this
passenger’s account data copy to the Decision Path View and draws
a lasso around the blue circles (Fig. 1c2) for comparison. Compar-
ing the Feature Summary of the positive and negative decision paths,
Daniel finds that the negative decision paths examine Sex and Class
(Fig. 1c3) while the positive decision paths check Fare, in which this
passenger has abnormal large values (T4). In addition, Daniel identi-
fies that most of the negative decision paths use 3 as the threshold for
feature Family Size. However, for the decision paths with positive pre-
dictions, the Family Size threshold is 1 (Fig. 1c4). This suggests that in
addition to feature types, these two groups of decision paths may even
have different thresholds of the same feature in predictions (T4).

8.2 Usage Scenario II
We use the German Credit Data [3] to demonstrate this usage sce-
nario. This dataset contains 1000 bank accounts with 9 features, each
having a prediction label of good credit (positive) or bad credit (nega-
tive). Some of the features are ordinal (e.g., Account Balance’s range
is [1,4], in which larger number indicates larger amount of balance).
In this usage scenario, we describe Emma, a data scientist working at
a bank to help her manager in analyzing whether a loan applicant has
a good credit. She utilizes a random forest model built on this dataset
to predict the credit status.

Emma first uploads a loan applicant’s information to iForest and
observes that the model predicts that the applicant has a bad credit.
From the Decision Path View’s prediction label distribution (Fig.4a),
she notices that the number of positive and negative decisions is sim-
ilar, which indicates this is likely to be a marginal case. To ensure
the prediction is reliable, Emma examines the Decision Path Projec-
tion in the Decision Path View to check the result and the correspond-
ing confidence of each decision path. From the color saturations of
circles, she observes that though negative decision paths outnumber
positive decision paths, several positive decision paths have high con-
fidence (Fig. 4b) (T3). To examine why these positive decision paths
achieve high confidence, she draws a lasso around these circles to ex-
amine them in detail. From the Feature Summary in the Decision Path
View, she observes that the highly adopted ranges in these decision
paths are Account Balance ∈ [3.5,4], Duration of Credit ≥ 30, and
Length of Current Employment ≥ 3.5 (T4). Since the correspond-
ing three feature values of the applicant belong to these three feature
ranges, these decision paths generate positive predictions with high
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confidence. Then, Emma needs to investigate why other decision paths
produce negative results so that she can better evaluate the strengths
and weaknesses of this application. To find the strongest reason be-
hind the rejection, Emma draws a lasso around the circles with dark
red color (Fig. 4c), which indicates that these negative decision paths
have high confidence. She observes that the important ranges for re-
jecting the application are Account Balance ∈ [2.5,4], Credit Amount
≥ 8k, and Value Savings / Stocks ≤ 2.5. It is strange that Account
Balance ∈ [2.5,4] is similar to the feature range used in those posi-
tive decision paths of high confidence. In order to understand why a
feature range is critical in both positive and negative decision paths
with high prediction confidence, Emma further examines the Decision
Path Flow to check the details of path structures. She observes that
though Account Balance occurs in most of the decision paths, it ap-
pears mostly in the first and second layers while Credit Amount ≥ 8k
appears mostly in leaf layers (Fig. 4d). To investigate these two ranges
regarding case-based reasoning, Emma switches to the Feature View
to examine account distributions (T6). From the feature distribution
histograms, Emma identifies that a great number of accounts (Fig. 4e)
have an Account Balance within [2.5,4], which indicates large bal-
ance amounts. Meanwhile, there are only a few people whose Credit
Amount are larger than 8k (Fig. 4f). Furthermore, by hovering over the
histogram bars ranging from [2.5,4] for Account Balance, she observes
that many blue circles are highlighted in the Data Overview (Fig. 4g),
which indicates many accounts have good credit (T5). However, many
accounts are in bad credits with Credit Amount larger than 8k.

Linking this observation to the decision paths in the Decision Path
View, Emma realizes that Account Balance ∈ [2.5,4] can separate the
dataset into two coarse-grained large groups based on labels. How-
ever, for the data in the group of Account Balance ∈ [2.5,4], the Credit
Amount ≥ 8k actually is the main reason for these decision paths gen-
erating negative prediction results with high confidence as it partitions
the data in a finer granularity. As Credit Amount is a very critical fac-
tor in approving loan application according to the bank policy, Emma
decides to suggest rejecting this application to avoid risk.

To provide explanations and suggestions, Emma decides to inves-
tigate what actions can be taken to change this loan application from
negative to positive. She first examines the local partial dependence
plots of features in the Feature View (T1) to inspect how the predic-
tions are affected by the feature values. As Credit Amount is a strong
factor, she first examines the column representing Credit Amount. As
shown in Fig. 4h, from the local partial dependence plot, when the
value of Credit Amount decreases from the current value 10,144 to
8,000, the prediction score keeps increasing. In the Feature View,
Emma drags the circular label mark of Credit Amount, which rep-

resents the current value of Credit Amount, to inspect the impact of
Credit Amount on the prediction so that she can suggest a feasible
value to the applicant (T7). When Emma reduces the Credit Amount
value, she observes the minimum change to turn the prediction into
positive is by setting Credit Amount to 8,035. Therefore, based on the
above analysis, Emma reports to reject this application and suggests
reducing the Credit Amount.

8.3 Qualitative User Study
A formal comparison between iForest and a baseline visualization sys-
tem is not applicable because existing techniques mainly focus on a
single decision tree or the diagnosis of tree-ensemble models, which
are different from the goal of iForest. In addition, random forest inter-
pretation includes a series of complex tasks that may require users
to navigate between the data, feature, and model perspectives, and
link them together to understand how random forests generate cer-
tain predictions, which is not a simple yes or no question. Therefore,
we choose to conduct a qualitative user study instead of a controlled
quantitative experiments.

Design and Procedure. From a local university and an industry re-
search lab, we recruited 10 participants (7 males, aged 21 to 28 years
(mean = 24.4, SD = 2.5)) including undergraduate students, gradu-
ate students, and research scientists. Four of them have knowledge
in information visualization; two of them have experience in machine
learning but not familiar with random forests. The entire study took
approximately 45 minutes to finish on average.

We began each study with a tutorial on random forests and an in-
troduction to iForest’s interface. The participants were asked to think
aloud. When introducing iForest, we used the Titanic dataset to famil-
iarize the participants with iForest. Then, we encouraged the partici-
pants to freely explore our system and try different interactions.

In the formal study, we adopted the German Credit dataset for users
to complete tasks to avoid the memorization effects. For each task, we
recorded the task completion time and the problems encountered by
the participants. After finishing all the ten tasks, we asked the partic-
ipants to complete a questionnaire with 12 questions to evaluate the
effectiveness and aesthetics of iForest. Each question was designed
using a 7-point Likert scale from strongly disagree (1) to strongly
agree (7). We also conducted a post-study interview to collect user
feedback on iForest, such as which parts need to be improved.

Results and Discussion. According to our design goals (Sec. 4),
we designed 10 tasks to cover different perspectives of random forest
interpretation. Tasks 1–3 pertain to case-based reasoning for gaining a
holistic picture of random forests. Tasks 4–10 pertain to auditing a pre-
diction to uncover the underlying working mechanisms and exploring



the relationships between features and predictions. Successfully com-
pleting all the tasks requires the participants to utilize all the views in
iForest. In general, the participants had completed the tasks success-
fully within a short period of time. However, two tasks (Task 9 and
Task 10) took longer time than other tasks. This may be because that
Task 9 requires the participants to examine different Feature Cells for
summarization and Task 10 requires participants to manually tweak
feature values. For the questionnaire, the majority of participants de-
clared that the interactions are easy (6.3), the system is visually pleas-
ing (6.5) and useful for interpret random forest models (6.7).

In the post-study interview session, most participants valued the
effectiveness of iForest in helping them understand random forests and
how a specific prediction is made. Particularly, they appreciated the
usefulness of the Decision Path View and the Feature View. For the
Decision Path View, a participant remarked that the feature ranges “can
help me examine why a point is false positive. It is because some
of its feature values are close to the decision thresholds.” For the
Feature View, one participant commented that “the Feature View is
very intuitive, I can see all the feature and their distributions. It is
easy to understand which features are important for decision making.”
Besides the positive feedbacks, the participants also provided many
suggestions on improving iForest. For the Feature Summary of the
Decision Path View, some participants mentioned that they need time
to understand the meaning of the visual encodings. This indicates that
for some people, the learning curve of iForest might be steep.

Apart from the visual design, most participants valued that iFor-
est can be helpful for random forest interpretation in many domains.
Some participants commented that “it can be useful for me to sell my
used car at a good price. I can see which features are important for
the prices and which parts I should fix.” Some other participants also
appreciated the usefulness of iForest for education and learning.

9 DISCUSSION

Generalization. Although iForest mainly focuses on interpreting ran-
dom forests, it can be applied to other tree-based ensemble models,
such as boosting trees [22]. These ensemble models all consist of
many decision trees and generate final predictions by summarizing the
output of all internal trees. Unlike random forests, in which decision
trees are independently trained, decision trees in boosting tree models
are trained in a sequential order. One potential enhancement to support
boosting trees in iForest is encoding the temporal information. For ex-
ample, we can enable users to switch the color encoding of the scatter
plot so that they can compare decision paths from different time steps
and understand how boosting trees evolve along time.

In addition, iForest can be easily extended to support multi-class
classification and regression tasks. For classification tasks, one poten-
tial improvement is to apply the one-vs-rest strategy. For example, we
can label one class as the positive class and all other classes as nega-
tive classes. For regression tasks, we can change the confusion matrix
in the Data Overview to a violin diagram or bar charts to represent the
prediction error distribution. Then, users can brush to select a specific
group of data items for further examination.

Lastly, although the focus on iForest is to interpret random forests, it
can also be extended to diagnose and debug random forests. For exam-
ple, we can visualize and compare the feature importances on different
trees to help feature engineering. From the evaluation perspective, we
can further enable users to switch between different model evaluation
measures, such as ROC-AUC [19] or training loss [46].

Scalability. Similar to many visualization systems, one critical is-
sue we considered when designing iForest is scalability.

In the Data Overview, circles may overlap when the number is large.
To address this issue, we first adopt an overlap removal algorithm to
enlarge the distances between overlapped circles. We also support
users to focus on a specific region of circles via interactions, such as
panning and zooming. In general, we support hundreds to thousands
of data items in the Data Overview. When the data size becomes even
larger, we can sample the data similar to Liu et al.’s approach [35].

In the Feature View, we use categorical colors to represent differ-
ent features. Since humans may have problems in perceiving more

than ten categorical colors [55] at the same time, iForest colors the
top ten features with largest importance. Other less important features
are colored in gray. We support to visualize six to ten features in the
same window depending on the display size, which is usually suffi-
cient since previous research indicates that human has a limited visual
capacity that around three to seven objects [50]. When the number of
features increases, users can use a scroll bar to examine them and we
do not limit the number of total features in datasets.

In the Decision Path View, iForest can support hundreds of paths
from different trees in the projection, which is usually adequate for
training a good random forest model [42]. When the number of deci-
sion paths increases, we use similar approaches adopted by the Data
Overview to alleviate the clutter problems. Depending on different
screen ratios, the Feature Summary and Decision Path Flow compo-
nents generally support to visualize four consecutive decision nodes
in a screen (Fig. 1C). Users can scroll these two components to ex-
plore longer decision paths and we do not limit the maximum decision
path length. Besides, as we use curves to link the nodes from differ-
ent layers, these curves may have overlapping problems. However,
this view mainly focuses on exploring a few similar paths. Thus, the
edge number between each layer is limited, which makes the view less
cluttered. In case more decision paths are investigated, users can view
their feature summaries instead of the detailed layer information.

We conducted our evaluation using a MacBook Pro with 2.9GHz
Intel Core i9 CPU with 16GB memory as the web server and Chrome
(version 63) as the browser. The system can perform interactively after
the model training stage, which may take a few minutes for the datasets
used in the usage scenarios.

Targeted users. Our targeted users are the data scientists from
various domains who apply random forests in solving their problems
and demand interpretable predictions. We assume that they have basic
knowledge on random forests but encounter difficulty in interpreting
them. Note that the machine learning experts who have rich knowl-
edge in machine learning may also benefit from using iForest in un-
derstanding the predictions made by random forests. Though they may
know how random forests are constructed, the variety and complexity
of the many trees still hinder them from understanding what a trained
model has learned and how the decisions are made in a prediction.

10 CONCLUSION

We have presented iForest, an interactive visualization system that
helps users interpret random forest models from various perspectives.
The system reveals relations between input features and output predic-
tions, hence enabling users to flexibly tweak feature values to monitor
prediction changes. It also helps users audit the decision process of
predictions to explore the underlying working mechanisms. Our eval-
uation results show that iForest can effectively assist users in under-
standing random forest models and their predictions.

iForest has several promising directions for future research. First,
instead of feature importance and partial dependence information, we
aim to further analyze feature correlations from the model perspective
so that users can conduct feature engineering to improve model perfor-
mance. Second, we plan to conduct more comprehensive user studies
to further evaluate the effectiveness of iForest, such as recruiting more
participants, conducting a quantitative study and comparing with other
interpretation tools. In addition, we like to improve the scalability of
our system for larger dataset, such as sampling the most representative
data items instead of random sampling in the Data Overview.
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