
To appear in IEEE Transactions on Visualization and Computer Graphics

Visual Interpretation of Recurrent Neural Network on Multi-dimensional
Time-series Forecast

Qiaomu Shen1*, Yanhong Wu2†, Yuzhe Jiang1‡, Wei Zeng3§, Alexis K H LAU1¶, Anna Vianova4||, and Huamin Qu1**

Hong Kong University of Science and Technology1, Visa Research2,
Shenzhen Institutes of Advanced Technology3, Delft University of Technology4

ABSTRACT

Recent attempts at utilizing visual analytics to interpret Recurrent
Neural Networks (RNNs) mainly focus on natural language process-
ing (NLP) tasks that take symbolic sequences as input. However,
many real-world problems like environment pollution forecasting
apply RNNs on sequences of multi-dimensional data where each
dimension represents an individual feature with semantic meaning
such as PM2.5 and SO2. RNN interpretation on multi-dimensional
sequences is challenging as users need to analyze what features are
important at different time steps to better understand model behavior
and gain trust in prediction. This requires effective and scalable
visualization methods to reveal the complex many-to-many relations
between hidden units and features. In this work, we propose a visual
analytics system to interpret RNNs on multi-dimensional time-series
forecasts. Specifically, to provide an overview to reveal the model
mechanism, we propose a technique to estimate the hidden unit
response by measuring how different feature selections affect the
hidden unit output distribution. We then cluster the hidden units
and features based on the response embedding vectors. Finally, we
propose a visual analytics system which allows users to visually
explore the model behavior from the global and individual levels.
We demonstrate the effectiveness of our approach with case studies
using air pollutant forecast applications.

Index Terms: interpretable machine learning, recurrent neural
networks, multi-dimensional time series, air pollutant forecast

1 INTRODUCTION

Recurrent neural networks (RNNs) have been widely applied in
various natural language processing (NLP) tasks such as machine
translation and sentiment analysis. Benefiting from the capacity to
model sequential data, RNNs have been extended to other domains
of sequential data beyond NLP, such as weather forecast [32] and
air pollutant prediction [22]. Compared to NLP tasks that take latent
embeddings as inputs, the input features in these applications are
usually multi-dimensional time series where each dimension has
its own semantic meaning. For example, in air pollutant forecast,
RNN models are widely adopted by domain experts where input
sequences are hourly recorded series of high-dimensional pollutants
(e.g., SO2) and meteorology features (e.g., wind speed).

Despite the competitive performance of RNNs, the lack of under-
standing of their internal mechanisms makes the models untrustwor-
thy and further limits their extension to other domain applications.

*e-mail: qshen@ust.hk
†e-mail: yanwu@visa.com
‡e-mail: yuzhe.jiang@ust.hk
§e-mail: wei.zeng@siat.ac.cn
¶e-mail: alau@ust.hk
||e-mail: A.Vilanova@tudelft.nl

**e-mail: huamin@ust.hk

During model development, the domain experts usually want to
better understand the models’ forecast. They tend to learn whether
the model’s behavior confirms any hypotheses according to existing
domain knowledge, which helps gain confidence in prediction for
decision making. On the other hand, the experts also aim to iden-
tify the patterns that have not been observed before by exploring
different cases to enrich their knowledge of the domain problem. In
addition, understanding RNNs also helps model designers to choose
appropriate model architecture and hyper-parameters.

Existing work on RNN interpretation such as LSTMVis [29] and
RNNVis [20] mainly focuses on NLP tasks. Both of these two
work interprets hidden units by providing their relevant words as
language contexts. However, existing techniques cannot be directly
applied in RNNs for high-dimensional time-series forecasts. First,
the high dimensionality of the input sequence makes it difficult to
discover relationships between features and hidden states. Since
different features at various timestamps are correlated, traditional
techniques are not applicable as they are not designed to reveal how
feature importance changes over time, which hinders the domain
experts’ ability to analyze if the prediction is consistently generated.
Analyzing this complex temporal multi-dimensional data requires an
effective visualization design that can reveal both cross-dimension
data relationships and the model’s temporal behavior. Moreover,
in real-world applications, the input dimension size may be from
hundreds to thousands, and the hidden unit size of the RNN models
can also be large. This requires the visualization methods to have
good scalability in order to demonstrate the distribution and complex
relationships of hidden units and input features.

To address these challenges, we propose MultiRNNExplorer, a
visual analytics system to help domain experts understand RNNs
in high-dimensional time-series forecasts from two aspects: model
mechanism and feature importance. To understand model mecha-
nism, we estimate the overall response from hidden units to features
and generate response embedding for both hidden units and features.
We then cluster the hidden units and features respectively to reveal
the high-level knowledge captured by the models. To measure the
feature importance, we calculate the gradient for all features at all
timestamps with respect to a given case. We then design a visualiza-
tion interface with coordinated views, enabling users to interactively
explore model behaviors.

Our contributions can be summarized as follows:
• A new method for estimating neuron response to multi-

dimensional time-series data by measuring hidden unit re-
sponse distribution on different value ranges of input features.

• A visual analytics system that helps users to explore, interpret,
and compare RNNs on multi-dimensional time-series data.

• Several case studies on air pollutant datasets to demonstrate the
effectiveness of the proposed system and the insights revealed
during exploration.

2 RELATED WORK

2.1 Recurrent Neural Networks
Recurrent Neural Networks (RNNs) is a class of neural networks that
contains feedback connections [11]. Compared with fully connected

1

To appear in IEEE Transactions on Visualization and Computer Graphics

neural networks, this architecture is capable of processing temporal
data and learning sequences. Many RNN variants have also been
developed in the past decades. One typical work is Long-Short
Term Memory (LSTM) [12]. By integrating several gate functions
and appending an additional cell state to the vanilla RNN, LSTM
avoids the gradient vanishing problem when processing the long
sequences. A similar but computationally more efficient approach
is the Gated Recurrent Unit (GRU) [6], which simplifies the model
architecture by using only two gate functions: update gate and
reset gate. To better utilize more data along the sequence, the bi-
directional RNN [27] is proposed to capture both past and future
information to improve prediction.

RNN-based models have not only been proven successful in per-
forming Natural Language Processing (NLP) tasks, but have also
been adopted in broader domains such as weather forecasting [32]
and environmental factor prediction [5]. For example, Oprea et al.
proposed an RNN-based architecture to forecast PM2.5 air pollu-
tants [22]. Compared with the NLP domain, these critical areas
not only require good model performance but also need humans to
understand how a prediction is generated and whether the results
are trustable for guiding further decision makings [16]. However,
understanding RNNs in such scenarios is challenging. On the one
hand, as each input dimension is usually informative and usually
indicates an interpretable factor compared with word embeddings
used in NLP, analyzing which features have the most impact on
prediction results is important. On the other hand, users also need
to explore and understand how the hidden states evolve over time
in order to reveal the underlying working mechanism of the RNN
along the sequence. We propose MultiRNNExplorer to better under-
stand and interpret RNN models, especially when the model input is
multi-dimensional as with the above critical areas.

2.2 Machine Learning Interpretation

In recent years, many machine learning interpretation methods have
been developed, which can mainly be categorized into two groups:
model reduction and feature contribution.

Model reduction methods usually learn a surrogate model to ap-
proximate the original complex model. The surrogate model is
usually simple and interpretable, such as linear regression [25] and
decision trees [7]. Depending on the ways of approximating the
original model’s behaviors, there are three main ways to conduct
model reduction: decompositional, pedagogical, and eclectic [2].
Decompositional methods are usually model dependent and simplify
the original model structure, such as the layer and weights of the neu-
ral network. Pedagogical methods only utilize the input and output
information to mimic the original model. Eclectic methods are either
a combination of the previous two approaches or are distinctively
different from them. Though model-reduction-based methods are
flexible and easy to understand, it is questionable whether or when
the surrogate model truly reflects the original model’s behaviors. We
thus discard this approach in our work.

Sensitivity analysis methods help users understand the relation-
ships between input features and output prediction. They usually
assign each feature an importance score to indicate how it impacts
the final prediction. One classical work is Partial Dependence Plot
(PDP) [9], which depicts how feature value changes affect predic-
tions. A recent work, SHAP [19], also calculates feature attribution,
but from a local perspective. SHAP is based on the ideas of Shapley
Values from game theory, which calculates the feature sensitivity of
a data instance by comparing it with a set of reference data points.
Compared with global solutions, it is more consistent and locally
accurate. One major limitation of sensitivity analysis methods is is
that they are computationally expensive.

Apart from the above work that focuses on describing the input-
output relationship, some work focuses on understanding and an-
alyzing the internal working mechanism of RNNs, especially the

hidden layer behaviors, by utilizing visualization techniques. Karpa-
thy et al. first conducted some explorative studies on hidden cell
activation on different sequence items [13]. LSTMVis [29] further
analyzed and compared the activation changes of each individual cell
to demonstrate that different cells may capture different language
patterns over time. Ming et al. developed RNNVis [20] to depict
the co-clustering patterns between hidden states and input words.
There is also some other work that focuses on a particular model
or domain. For example, Seq2Seq-Vis [28] mainly focuses on the
sequence-to-sequence model and RetainVis [14] enables experts to
analyze electronic medical data using a RNN model. Though these
methods show how the relationships between hidden units and input
data change over time, they fail to capture the importance evolution
of each individual input dimension, which prevents them from being
adopted in critical areas such as finance and environmental factor
forecasting. We aim to solve this problem by revealing the activation
sensitivity of hidden units to different features and highlighting what
features mostly affect the final prediction the most over time.

3 APPLICATION AND MODELS

3.1 Application
In this paper, we focus on a particular type of regression task on
multi-dimensional time-series data: air pollutant forecast of target
pollutants at target locations. We collaborate with a group of do-
main researchers who use RNNs to conduct air pollutant forecasting.
Specifically, they choose 16 air quality monitoring stations in Hong
Kong with the stations’ locations as the target locations and select
PM2.5, PM10, NO2, SO2, and O3, the five air pollutants which effect
the human’s health the most, as the target pollutants. The ML mod-
els are trained to predict these target air pollutants at each station.
Though the RNNs can provide high accuracy, researchers are more
interested in understanding why models make certain predictions so
that they can decide whether to trust the models for decision making.
We thus develop MultiRNNExplorer to help the domain researchers
explain the RNNs’ behavior on their temporal multi-dimensional air
pollutant dataset.

3.2 Data Description
The dataset includes hourly observations of the air pollutant and
meteorology data from weather and air quality monitoring stations
in Hong Kong from Jan. 01, 2015 to Dec. 31, 2018. The features
are listed in Table 1.

Table 1: There are two types of features taken as input: air pollution
and meteorology.

Category Feature type
Air pollutant PM2.5, PM10, NO2, NOx, SO2, CO, O3
Meteorology Wind Speed(Wind), Wind Direction(WD),

Dew Point(DP), Relative Humidity(RH),
Temperature(Temp), Sea Level Pres-
sure(SLP), Station Pressure(SP), Cloud
Cover(CC)

Similar to other work on air pollutant forecasts [33], when fore-
casting the air pollutants at a target location, we divide the regions
around the target location into different spatial partitions and ag-
gregate the data observed by all the stations within each group
in order to generate features. Specifically, as shown in Fig. 5B,
we divide the nearby regions into five non-overlapping rings cen-
tered at the targeted location with radii of 10km, 30km, 100km,
200km, and 300km. Each ring is further divided into 8 sectors
with the same angle such that the whole area around the target lo-
cation is partitioned into 40 sub-regions. For each sub-region, we
use the air pollutant and meteorology data observed by the moni-
toring stations located in the corresponding sub-region (including

2

To appear in IEEE Transactions on Visualization and Computer Graphics

... ...

...

yT+n
Output
Layer

x0

RNN
Cell

x1

RNN
Cell

xT-1

RNN
Cell

...

...

yT+n
Dense
Layer

x0

RNN
Cell

x1

RNN
Cell

xT-1

RNN
Cell

Dense
Layer

Output
Layer

（A） （B）

Figure 1: RNN Architectures considered in our experiments: A) RNN:
the RNN layer is directly connected to the output layer; B) RNN-Dense:
adding dense layers between the RNN layer and the output layer.

the 16 target stations) as the features. If there are multiple mon-
itoring stations in a sub-region, we aggregate their data and use
mean values as the features. In this way, each feature can be iden-
tified as a triplet (distance,direction, f eature type); for example,
(10km,E,NO2) indicates NO2 concentration observed at 10km away
East of the target location. For each time step, we use a vector to
represent all the features where each dimension indicates a feature
triplet. In this way, the data within a time peroid can be represented
as a multi-dimensional sequence.

3.3 Models Description
RNNs take a sequence as input with fixed length T :
{x0,x1, ...,xT−1} and predict the value at timestamps equal
to or greater than T , where xt ∈ Rm. A hidden state ht is updated
according to the input of timestamp t and previous hidden state ht−1.
In vanilla RNNs, the hidden states are updated by:

ht = σ(Wht−1 +V xt) (1)

Where W and V are weight matrices and σ is the tanh function
which constrains the output of the hidden states to (−1,1). We
consider two types of architectures shown as Fig. 1. RNN: the fi-
nal timestamp hidden state is directly connected to the output layer
(Fig. 1A). RNN-Dense: there are several dense layers between the
final timestamp and output layer (Fig. 1B). In addition to vanilla
RNNs, we also consider two variants: GRU and LSTM, which miti-
gate the gradient vanishing issue and enable the models to memorize
long-term information by adding the “gating” mechanism. In our ap-
plication, these models take the historical data discussed in Sec. 3.2
as input and output the predicted concentration of target pollutants
in the future.

4 SYSTEM DESIGN

In this section, the requirement and tasks are discussed. Over the past
12 months, we closely worked with two domain researchers in urban
air quality analysis and forecasting. One researcher (R1) studies
the atmospheric diffusion of air pollutants and has interest in what
machine learning model learns. The other researcher (R2) is working
on air pollutant forecasts through machine learning techniques.

4.1 Task analysis
We distill three general goals: G1: Understand the RNN model
behavior/mechanism in high-dimensional forecasts. G2: Understand
the feature importance. G3: Support case-based exploration. To
fulfill the these analytical goals, we specify the following tasks:

T1: Encode hidden state statistics. Hidden states, a direct re-
flection of a model’s intermediate results, are critical for revealing
the information captured by a model (G1, G2). Visualizing hidden
state statistics can provide a holistic picture of a model’s behavior.

T2: Measure feature importance at multiple scales. The vi-
sual analytics system should allow users to explore feature impor-
tance at different scales(G2). For example, the overview level
presents feature importance summarized from the whole dataset
and the individual level focuses on the importance of a single case.

Test Data

Model

Unit response

Feature Importance

Preprocessing

Clustering

Projection

Analysis

Ranking

Filter/Query

Visualization

30_NE_Wind

Clustering Importance importance

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 30_NE_PM25

Individual

Projection

Figure 2: The system overview that includes three major modules:
Preprocessing module, Analysis module and Visualization module.

T3: Analyze the response between features and hidden states.
Measuring the response relationship between features and hidden
states is the key factor in revealing what patterns are captured by the
model (G1). Targeting at the complicated many-to-many relation-
ship, the hidden states as well as the features should be clustered to
alleviate the burden on end users.

T4: Support temporal analysis. One major advantage of RNNs
is that they can capture time-dependent sequence information. Show-
ing what information is preserved along the sequence and or dis-
carded helps users better understand how the temporal information
is utilized by the model(G2, G3). In addition, users can identify the
critical time steps that may cause a significant change in prediction.

T5: Identify data clusters and outliers. To support case-based
reasoning, users need to first obtain a data overview by identifying
the data clusters and outliers (G1, G3). This provides concrete ex-
amples to guide users in further exploring the data of interests. Users
can also inspect the outliers that have distinct prediction results to
detect if the model behaves incorrectly according to certain domain
knowledge.

T6: Explore the case-based model behaviour. The system
needs to enable the users to explore how a model behaves for indi-
vidual cases such as build the correlation between feature trend and
feature importance trend(G3). Since hundreds of temporal features
are taken as input for each case, the effective summary is required.

4.2 System Overview

We implement MultiRNNExplorer as a web-based system using
Flask, VueJS, and D3. The system consists of three modules: 1)
preprocessing, 2) analysis, and 3) visualization. With chosen models,
the preprocessing module generates the raw data that need to be
analyzed, including estimating the response relationship and feature
importance. We then apply various data analysis techniques such
as clustering, projecting, and ranking in the analysis module to
provide the data structure required by the visualization module.
The visualization module integrates coordinated views to support
interactive interpretation of and reasoning about the model behavior
at different perspectives.

5 MODEL INTERPRETATION

This section first describes how we analyze the relationships be-
tween features and hidden states (T3). Specifically, we propose an
efficient method to calculate how sensitive each hidden state is to
certain feature changes and apply a clustering method to group re-
sponse relationship patterns for better scalability. This provides users
an overview on how the model categorizes different features and
perturbing features to what value ranges may largely affect model
behaviors. We also introduce a gradient-based method to identify the
most important features that can impact the prediction over time (T2,
T4). This provides another perspective on analyzing how feature
importance changes along the sequence. These two approaches are
complementary to each other in enabling users’ understanding and
explaination of model behaviors.

3

To appear in IEEE Transactions on Visualization and Computer Graphics

5.1 Relationships between Hidden States and Features
To measure how feature changes can affect hidden states (T4), one
common approach is perturbating feature values and measuring how
the hidden state distribution changes compared with the original data.
However, perturbation-based methods are usually time-consuming
and not applicable when different features are correlated. Inspired
by [30], we adopt another method that directly compares the hidden
state distributions of different feature value ranges. This approach
is computationally efficient and provides a good approximation for
whether a hidden state is sensitive to feature changes. This section
introduces how we generate the hidden state distribution for different
value ranges of each feature and how we quantitatively measure the
relationship strength between features and hidden states based on
the generated distribution.

5.1.1 Hidden State Distribution
As discussed in Sec. 3.2, the model input is a sequence
of features X = {x0,x1, ...,xT−1} where xt indicates a multi-
dimensional feature vector at time step t. Each feature dimen-
sion is denoted as x f

t in which f represents a feature triplet
(distance,direction, f eature type) at time step t. Similarly, we
use H = {h0,h1, ...,hT−1} to indicate the hidden state sequences
at different time steps where ht = {h0

t ,h
1
t , ...,h

D−1
t } indicates the

hidden state distribution at time step t and D denotes the hidden unit
size. As ht is computed by feeding xt into an RNN model L, we
denote ht = L(xt). Considering a dataset X = {X0,X1, ...,XN−1}
consisting of N sequences, we can collect a feature vector set
V = {x | x ∈ X ,X ∈ X} where |V | = N× T . Based on the value
ranges of a feature f , we can further divide V into different groups
V f

g = {x | Θlower
g ≤ x f < Θ

upper
g ,x ∈ V} where Θlower

g and Θ
upper
g

denote the feature range thresholds of a group g. In this paper, we
set the number of groups to be 3 where the thresholds are the 25th

and 75th percentiles of each feature. We denote these three groups
as V f

perc<0.25, V f
0.25 ≤ perc<0.75, and V f

perc ≥ 0.75. As we can obtain
the hidden states by feeding the data into the RNN model, we can
compute the corresponding hidden state set H f

g = {L(x) | x ∈ V f
g}

for a feature group V f
g . In this way, the distribution of the jth hidden

unit for feature group V f
g can be denoted as H j, f

g = {h j | h ∈H f
g}.

Measuring the distribution of H j, f
g enables us to compare the outputs

of different hidden units when a feature value falls into a certain
range and infer if these hidden units are sensitive to feature value
changes. For example, Fig. 3 shows the distribution of the 92th and
93th hidden units for feature PM2.5 and SO2 respectively. We can
see that the 92th hidden unit has distinct distributions for different
value ranges on feature PM2.5. Meanwhile, for feature SO2, the
distributions look identical. This indicates that the 92th hidden unit
is more sensitive when the value of PM2.5 changes compared with
SO2. Similarly, we can observe that the 93th hidden unit is more
sensitive to SO2 changes, which indicates that different hidden units
can capture distinct feature patterns.

5.1.2 Relationship Strength Estimation
We estimate the relationship strength of a hidden unit with a feature
by measuring the distances between the hidden unit distributions of
different feature value ranges. To measure distribution distance, we
apply Two-sample Kolmogorov Smirnov (KS) statistics which can
be presented in following formulation:

KS(S1,S2) = maxsupx(|FS1(x)−FS2(x)|) (2)

where the supx is the supremum of the set of distances, FS1 and FS2
are the cumulative empirical distribution functions of the first and
the second sample respectively, and sup is the supremum function.
Given significance level α (generally 0.05) the null hypothesis of

PM2.5

un
it

92
un

it
93

SO2

Figure 3: Compare the response of hidden units(92 and 93) to features
(PM2.5 and SO2).

two samples having different contributions, the reject co-efficient
can be calculated as follows:

Re j(S1,S2) = c(α)

√
|S1|+ |S2|
|S1||S2|

,c(α) =

√
−1

2
lnα (3)

Based on the KS statistics, the distance between two samples can
be measured as follows:

Dis(S1,S2) =
{

KS(S1,S2), if KS(S1,S2)> Re j(S1,S2)
0, otherwise

(4)

To quantitatively measure the relationship strength between a
hidden unit and a specific input feature, we compare the hidden unit
distribution of data in different feature ranges with the distribution
of all the data. A larger difference indicates a stronger relationship
as the hidden unit will generate different values when the feature
value changes. As shown in Fig. 3, the ks-statistics of unit 92-PM2.5
and unit 93-SO2 are significantly larger than the other two combina-
tions, indicating the statistics can effectively measure the distribution
difference. Specifically, the relationship strength between the jth hid-
den unit and feature f can be measured as the maximum ks-statistics
among all different feature selections:

RS(j, f) =max(Dis(H j, f , H
j, f
perc<0.25),

Dis(H j, f , H
j, f
0.25 ≤ perc<0.75),

Dis(H j, f , H
j, f
perc ≥ 0.75))

(5)

5.2 Hidden Unit and Feature Clustering
Another major challenge for interpreting RNN models on multi-
dimensional sequential data is scalability. RNN models usually
contain hundreds to thousands of hidden units for each layer, which
makes it ineffective to display the activation distribution of every
hidden unit to users. To address this challenge, previous work on
visual interpretation of machine learning models usually use clus-
tering [17, 20] or sampling [24] techniques to reduce the number
of visual elements displayed. In this work, we choose clustering
methods over sampling since clustering can better preserve the hid-
den units’ response relationship to features. It also provides a good
summary of the knowledge that the model learned.

With the measurement of unit response, we can generate a 2D
table with the size of D× M, where D and M are the size of hidden
units and features respectively. The cell of jth row and kth columns is
the response of hidden unit h j to feature f k: RS(j, f k). Then we can
define the response embedding vector for both features and hidden
units. For any feature f k and hidden unit j, the response embed-
ding vectors are vec f k = [RS(0, f k),RS(1, f k), ...,RS(D−1,rk)] and

4

To appear in IEEE Transactions on Visualization and Computer Graphics

Feature cluster Unit cluster

Figure 4: Cluster score with different cluster number. Left: feature
cluster. Right: hidden unit cluster. The horizontal axis represents the
cluster number, the vertical axis represents the cluster score.

vec j = [RS(j, f 0),RS(j, f 1), ...,RS(j, f M−1)], which are the specific
columns and rows respectively.

To analyze the relationship between hidden units and features,
Yao et al. [20] used a bipartite graph to model the many-to-many rela-
tionship and used co-clustering algorithms [8] to group hidden units
and input features simultaneously. We test co-cluster techniques:
Spectral Co-clustering(SCoC) as well as other techniques including
Agglomerative Clustering(AC) and Spectral Clustering(SC) on our
dataset. The clustering methods other than SCoC take response
embedding vectors as input to cluster features and hidden units
respectively. To rank the performance of different clusters with
different cluster numbers, we use the Silhouette Coefficient [26] to
evaluate the quality of the clusters. Silhouette Coefficient ranges
from -1 to +1, with higher values of this coefficient meaning the
cluster quality is more appropriate.

Fig. 4 shows cluster quality for features (left) and hidden units
(right). We found that the Spectral Co-clustering method has a low
Silhouette Coefficient score because it keeps creating a one-to-one
relationship between the feature cluster and the hidden units cluster.
In this case, it can be found that Agglomerative Clustering with
cluster number of 12 and K-Means with cluster number of 10 show
the best performance for feature and hidden units respectively. With
the Silhouette Coefficient, our system can automatically choose the
clustering algorithms and cluster number. Users can also manually
choose different clustering algorithms and change the number of
clusters based on their analysis requirement.

The clustering results can be modeled as bipartite graph G =
(VH ,VF ,E), where VH is the hidden unit cluster set and VF is
the feature cluster set. E indicates the weighted edge set be-
tween unit clusters and input dimension clusters with the weight of
EH,F = ∑

h∈H
∑
f∈F

RS(h, f) where H ∈VH and F ∈VF . This bipartite

graph of features and hidden units can help users understand the
information captured by different hidden unit clusters by examining
which feature clusters have strong relationships with them.

5.3 Local Feature Importance
Inspired by back-propagation in machine learning, we conduct the
individual level analysis based on the local gradient which is used
to present the word saliency in NLP tasks [15]. Given the output of
feature yl , we use the local gradient with respect to feature xk

t ∈ x to
present the feature importance as:

w(yl ,xk
t) = |

∂ (yl)

∂ (xk
t)
| (6)

The absolute value of gradient w(yl ,xk
t) indicates the sensitiveness

of xk
t to the final decision of yl with the given input sequence of x.

This measurement shows how much the specific feature at a specific
time contributes to the final output [15]. However, for input x with
the length of T , the total number of all feature importance scores is
N×T which causes difficulty in showing the overview. To address
this challenge, we leverage the clustering result from Sec.5.2 and
define the cluster importance of features as:

W (yl ,H i
t) = ∑

xk
t ∈H i

t

|w(yl ,xk
t)| (7)

Thus, the size of the cluster importance for all timestamps is C×T
where C is the number of clusters (C < N).

6 VISUALIZATION DESIGN

In this section, we introduce the visual design based on the design
tasks discussed in Sec.4.1. As shown in Fig. 5, the visual analytic
system consists of six coordinated views. Starting from the configu-
ration panel Fig. 5B, users are able to select the target feature and
the model to be analyzed. The region partition will be shown as
Fig. 5B after the model is selected. To support exploring the model
mechanism, the Cluster View is displayed to summarize the hidden
units’ response to the features (Fig. 5A) and the Feature Importance
View (Fig. 5C) is shown to visualize the temporal importance of
each feature. Furthermore, users can select the individual cases in
the Projection View (Fig. 5E) and the selected cases are grouped by
similarity and displayed in the Individual View (Fig. 5D).

6.1 Cluster View
The Cluster View (Fig. 5A) shows the overview of response relation-
ship (T3) between the hidden units and features. The hidden units
and features are visualized as the Hidden State Distribution and the
Feature Glyph respectively.

Hidden State Distribution. The left column on the Cluster View
is the Hidden State Distribution component. As shown in Fig. 6A,
each row represents a hidden unit cluster. Each hidden unit in a
cluster is represented as a line chart that shows its activation distribu-
tion(T1). The x-axis represents the hidden unit output ranging from
−1 to +1 and the y-axis represents the corresponding probability
(Fig. 6B). From the line chart, users can observe and compare the
activation distribution patterns of different hidden units.

Feature Glyph. The right column of the Cluster View is the
Feature Glyph component (Fig. 6C). Similar to the Hidden State
Distribution, each row represents a feature cluster in which a glyph
(Fig. 6D) represents a feature. This enables users to quickly identify
different features and compare the common attributes of multiple
features for analysis. As described in Sec. 3.1, we define our usage
scenario as air pollution forecasting where each feature has three
identifiers: the feature category, the direction, and the distance from
the feature to the target location. As a categorical feature, we first use
the background color of the feature glyph cell to encode the feature
category. Different hues encode different categories, and users can
find the color legend at the top of the Cluster View. To intuitively
encode target location direction, we draw a line segment starting
from the glyph center that has the same direction angle. We also
draw a square in the glyph where its radius, which is an appropriate
channel to encode numerical values, encodes the distance to the
target location.

Interactions. We also support various interactions to allow users
to dynamically explore this view. The curves linking the hidden
state cluster and feature cluster with the width indicate the response
strength (Fig. 6E). Users can also filter the link according to the
response strength by adjusting the slider bar. When hovering over a
hidden state cluster or a feature cluster, the corresponding links and
linked clusters will be highlighted.

In this view, the users can obtain an overview of the response
relationship between hidden units and features, for example, we can
find that there are not strong links connecting to cluster 8 (Fig. 5 A3),
this may be because that all the hidden units are “weakly” activated
in cluster 8.

6.2 Feature Importance View
The feature importance view allows users to explore the feature
contribution to model output (T2). As discussed in Sec.5.3, with
an input case, we are able to measure the importance of a single
feature as a sequence of importance scores which correspond to the
importance at all timestamps (Fig. 5C).

5

To appear in IEEE Transactions on Visualization and Computer Graphics

CO NO2 O3 SO2 PM10 PM25 Temp Wind WD RH SLP DP CC SP

Sort By
type
direction
distance0 0.5 1

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 100_NE_SO2

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 30_NE_PM25

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 30_NE_PM10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 100_NE_PM25

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 200_E_PM25

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 10_WN_PM10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 30_NE_Wind

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 200_E_SO2

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10 30_E_Wind

A

B

A1

A2

A3

C D

EA4

A5

D1

Figure 5: MultiRNNExplorer contains multiple coordinated views to support exploring and understanding RNNs’ behaviors on multi-dimensional
time-series data, especially on hidden unit response and feature importance. The Configuration Panel (B) allows users to select an RNN model
and configure parameters. To reveal model mechanism, the Cluster View (A) summarizes the hidden unit clusters’ response to feature clusters,
and the Feature Importance View (C) summarizes the temporal importance of input features. The Projection View (E) displays a data overview,
allowing users to select sequence instances of interest for further analysis. The selected instances will be shown in the Individual View (D).

Distance to target location
-1 +1

Probability

Hidden unit output

Direction to target location

(A) Hidden unit cluster (C) Feature cluster

Type of features
(background color)

O3 SO2 PM10 PM25

1 2

(B) (D)

(E)

North

West

Figure 6: Design of Hidden unit distribution and feature glyph. A)
Hidden unit cluster; B) Hidden unit distribution; C) Feature cluster; D)
Feature distribution for selected features; E) Feature glyph design; G)
Response link.

Since the importance score only provides a local description for
the feature importance, an effective visualization is needed to show
an overview of each feature’s importance. We choose boxplot for
this task since it can present the statistics overview. To show the
temporal trend of a feature, we group the importance score of all test
cases by the timestamps and make statistics group by group. For the
test sequence with a length T , the feature importance charts which
contain T boxplots shows the trend of feature importance (Fig. 5C).

The horizontal axis indicates the timestamps and the vertical axis
indicates the feature importance score. The top line, upper edge,
middle line, bottom edge and bottom line of the boxplot indicate the
maximum, 75th percentile, mean, 25th percentile and minimum of
the importance scores. Since sometimes the maximum will much
larger than the 75th percentile value, which makes the box vary flat
and difficult for users to explore the temporal pattern, we limit the
maximum score Ms shown in the view. If a boxplot has scores
larger than Ms, a diamond symbol appears on the top of the boxplot.
The opacity of the diamond indicates the magnitude of the absolute
difference between the largest score and Ms.

We also define the overall importance score for a single feature as

the sum of the mean score at all timestamps. By default, the boxplot
charts will be ranked according to the overall feature importance
score. Due to the large number of features, only the top 10 charts
are visualized. Users may observe other features by using the scroll
bar or filtering the features from the projection view (Fig. 5E).

6.3 Projection View
To help users obtain an overview of case clusters and outliers (T5),
we design the Projection View (Fig. 5E) which supports various
interactions such as zooming and brushing to allow users to select a
subset of data for further examination.

In the Projection View, each circle represents a individual case.
There are many multi-dimensional reduction methods such as MDS
and PCA; we select t-SNE as it can strongly repel dissimilar points
and show clusters clearly. For each case, we collect the feature
cluster importance over all time steps (discussed in Sec.5.3) as the
input vectors of t-SNE. Thus, the positions of the circles reflect the
similarity of their cluster importance. We use a sequential color
to encode the model’s output of each case shown as the legend in
Fig. 5E.

Furthermore, to improve the flexibility of the case selection, we
add a two-scale timeline (Fig. 5E top) to show the target feature trend,
enabling user filtering of the cases by time, and a feature selection
component (Fig. 5E left) to filter the cases by feature value.

6.4 Individual View
After observing an overview on data similarities, users may need to
drill down to a few individual cases of interest for detailed exam-
ination. We develop the Individual View for users to explore and
compare the different individuals over time (T6).

The selected individual cases are visualized as several stacks of
cell as in Fig. 7A. Each cell consists of three components: the Feature
Trend Chart (Fig. 7A1), the Cluster Importance Chart (Fig. 7A2),

6

To appear in IEEE Transactions on Visualization and Computer Graphics

-0.12

-0.08

-0.04

0.00

0.04

0.08

0.12

0 5 10 15 20

(A) (B)

(D)

(E)

(A1)

(A3)

(A2)

Figure 7: Individual design and the alternative designs. A) Individual
View. A1) Feature Trend Chart; A2) Cluster Importance Chart; A3)
Top Features Chart. B) themeriver as the alternative design of the
Cluster Importance Chart; C) and D) node-like sequence and node
sequence as the alternative design of Top Features List.

and the Top Feature List (Fig. 7A3). All these three components
share the same x-axis which represents the time where time steps
increase from left to right.

Feature Trend Chart is a multi-line chart that depicts how different
features’ values change over time. The y-axis represents normalized
feature values where the feature value increases from bottom to top
ranging between 0 and 1. Each line represents a feature and the line
color encodes feature category the same as in the Cluster View. The
corresponding lines are highlighted when hovering on any feature
glyph in the Cluster View or hovering on feature importance view.

The middle component is the Cluster Importance Chart that sum-
marizes how each feature group’s gradient changes over time. As
shown in Fig. 7A2, each feature group is represented as a horizontal
bar chart and aligned vertically in the same order as the Cluster View.
For a single bar chart, each bar represents the averaged gradient for
the corresponding feature group at one time step. We use both the
bar height and bar color to encode the gradient value. The first visual
channel to encode gradient value is bar height where a greater height
indicates a larger gradient value. When the gradient value exceeds a
certain limit, instead of further increasing the bar height, we overlay
another darker bar where its height indicates the exceeding gradient
value for better vertical space efficiency. We have also considered
other design choices such as a themeriver (Fig. 7B) in which each
colored flow indicates a feature group. However, comparing differ-
ent feature groups may be difficult and it requires more space when
the gradient is large. Thus, we abandon this alternative choice and
adopt the current design.

Though the Cluster Importance Chart provides an overview of
how each feature cluster’s importance changes over time, users still
need to link this component to the Cluster View to observe which
features are considered important by the model. We design a Top
Feature List to visualize the important features over time. Our first
design is shown in Fig. 7D. The x-axis represents time and the y-axis
represents feature importance rank. The top N features at each time
step are visualized as feature glyphs and are positioned vertically
according to their importance. We draw links to connect glyphs that
represent the same feature in consecutive time steps to enable users
tracking same features along time. However, in the discussion with
domain experts, this design leads to serious visual clutter due to link
overlap when feature ranks frequently change over time. To alleviate
users’ mental burden in tracking same features and to reduce visual

clutter, we develop another design alternative as shown in Fig. 7E.
In this design, each feature is represented as a row and aligned
vertically with a fixed position on y-axis. We draw its corresponding
feature glyphs at the time steps where this feature is ranked among
the top N most important features. Thus, users can track a single
feature’s importance along time by observing how many feature
glyphs are drawn on the corresponding rows.

To reduce redundant information, we further simplify this design
(Fig. 7A3.) First, instead of drawing duplicate feature glyphs in a
row, we draw a grey line segment to mark the time steps that the
corresponding feature is among the top N important features. Two
colored circles are positioned at the endpoints of a line segment
to indicate the starting and ending time steps. The circle color is
consistent with the feature glyph color. At last, we only draw a
single feature glyph at the beginning of each row to indicate the
corresponding feature. To make the Top Feature List space efficient,
we only show ten rows by default, and other features are collapsed
as feature glyph rows as shown in the bottom at Fig.7A3. Users can
click the glyph rows to select different features to analyze.

The three components enable users to observe which features are
considered important by the model over time and how the impor-
tance is related to feature value changes. Users can also append
multiple cells to the Sequence View to compare different sequences
side by side. When the number of cells becomes large, we use
dbscan to cluster the similar individual cases by the fatten cluster
importance(discussed in Sec. 5.3) into one stacked cells with one
randomly selected case as the representative case at the top of stack.

6.5 Interactions and Linkage

To better facilitate the interactive exploration of RNNs, our system
supports cross-view interactions.

Cross-view highlight. There are three key visualization compo-
nents appearing across different views: features, feature clusters,
and cases. These components are visualized and encoded in different
approaches in across views to support various analysis requirements.
If one feature is selected, its corresponding visual elements in other
views will be highlighted.

Linkage between individual view and feature importance
view. When multiple individual cases are selected, the feature impor-
tance by time will be visualized as multi-line charts as Fig. 5C shows.
When users are hovering over an individual case, the corresponding
line-chart will be highlighted.

7 CASE STUDY

In this section, we demonstrate the effectiveness of MultiRNNEx-
plorer in analyzing model behaviors and feature importance. We
use the air pollutant data between 2015 to 2017 to train the model
and use 8,375 cases in 2018 as testing data for analysis. The models
training is conducted on a workstation with 2 × Intel Xeon E5-
2650 v4 CPUs and 4 × Nvidia Titan x (Pascal Architecture) 12GB
GDDR5X graphics cards. The hyper-parameters, average training
time (seconds) and accuracy of different models are listed in Table 2.
We demonstrate our system to the domain expert and analyze the
trained models on several tasks.

Table 2: Configuration and performance of RNNs, including vanilla
RNN, GRU, LSTM, and the RNNs with dense layer (e.g., RNN-Dense).
The performance is evaluated by the mean square error (MSE) of
PM2.5; low MSE represents better performance.

Model Size Dense Layer Time MSE (PM2.5)
Vanilla RNN 100 No 364 5.31 ± 0.98
GRU 100 No 1081 4.32 ± 0.51
LSTM 100 No 1377 4.81 ± 0.31
GRU-Dense 100 3 1387 4.25 ± 0.21
LSTM-Dense 100 3 1525 4.53 ± 0.53

7

To appear in IEEE Transactions on Visualization and Computer Graphics

7.1 Changes Over Epochs
To explore the model behavior over the training process, we manually
select the RNN model trained after 5, 40, 120, and 200 epochs.
Fig. 8 shows the projections and top five most important features at
different epochs.

In the Projection View (Fig. 8A), we choose PM2.5 as the target
feature and use a sequential color schema to indicate the predicted
value where a darker color indicates a higher PM2.5. At early stages
(5th and 40th epochs), we find that the points in a darker color are
distributed uniformly in the projection and are mixed together with
the points with a light color. This indicates that the cluster gradients
are not able to present the distribution of the target feature yet. After
training more epochs, the dark points become more concentrated.

In addition, the Feature Importance View (Fig. 8B) shows that
the magnitude of the gradient starts from a small value and then
keeps increasing in the training process. We also find that in the 5th

and 40th epochs, the top five important features are PM2.5 and PM10
while in the 120th epoch, the feature of wind speed is also ranked in
the top five most important features. In the 200th epoch, more fea-
tures related to wind speed are listed in the top five features. Another
finding is that in the 5th epoch, we observe that only the features
from the last time steps are considered important while the models
at the 40th, 120th, and 200th epochs leverage more timestamps in
the forecast. The domain experts indicate that the PM2.5 and PM10
at nearby locations are the most intuitive features to forecast PM2.5
(PM10 and PM2.5 are always highly correlated). Moreover, the last
time step is very important because it is the closest one to the final
prediction. Based on these observations, we infer that the features
that are directly related with the targeted air pollutant are considered
important in the early stage of the training process. After more
epochs, the model starts to learn other features that may indirectly
influence the forecast, such as the Wind Speed and other pollutants
(SO2) shown as Fig. 8B, 20th,200th epochs.

According to official website of United States Environmental
Protection Agency (EPA): “SOx can react with other compounds in
the atmosphere to form small particles. These particles contribute
to particulate matter (PM) pollution” [1]. We also discussed the
reason that SO2 becomes important later in training with the domain
experts. They said it is also possible that the SO2 relates some
industrial activity which results in the high-air pollutant. Moreover,
the domain experts explain that the wind speed is important for
several reasons: 1) the air pollutants will be blown away if the wind
speed is high; 2) since the north and west of the target location
have more factories which are the major source of air pollutants, the
appropriate wind speed and direction will bring the air pollutants
to Hong Kong. Moreover, the data also show different patterns
in the Cluster View during the training process. For example, as
shown in Fig. 8C, we found that in the 5th epoch almost all three
types of features: Sealevel Pressure, Dew-point and Station Pressure
are grouped into one cluster. After the 40th epoch, we notice that
this cluster is split into two clusters. With these observations, we
derive the conclusion that the model gradually learns the high-level
knowledge in the training process.

7.2 Understand Model Behaviors
7.2.1 Model Mechanism
This case study is conducted to understand what RNN models learn
and to compare different models trained for air pollutant forecasting.
With MultiRNNExplorer, we are able to select models at any epoch.
Fig. 5A shows the Cluster View of GRU-Dense; by observing the
cluster of features, we find that the features with same feature types
are likely to cluster together such as the Relative Humidity and
Temperature, are exactly grouped into two separated clusters shown
as Fig. 5A4 and A5. Moreover, we find that the PM2.5 and PM10 are
always clustered together as shown in Fig. 5A1 and Fig. 5A2. The

30_N_PM25

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.01

0.02

0.03

30_NE_PM25

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.01

0.02

0.03

10_SW_PM10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.01

0.02

0.03

10_E_PM10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.000
0.005
0.010
0.015
0.020
0.025

30_ES_PM25

0 2 4 6 8 10 12 14 16 18 20 22 24
0.000
0.005
0.010
0.015
0.020
0.025

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.02

0.04

0.06

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.01
0.02
0.03
0.04
0.05

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00

0.02

0.04

0.06

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.01
0.02
0.03
0.04
0.05

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

200_E_PM25

10_WN_PM10

PM10

10_WN_PM25

10_NE_PM10

200_E_PM25

100_NE_SO2

10_WN_PM25

10_E_Wind

10_S_PM25

100_NE_SO2

200_E_PM25

10_WN_PM10

10_E_Wind

10_S_Wind

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

 5th epoch 40th epoch 120th epoch 200th epoch

(A)

(B)

(C)

P1

P1

P1

P1

P2
P2

P2

P2

P3

P3

P3

P3P4

P4

P4 P4

Figure 8: The RNN model shows different behaviors along the training
process. A, B, and C show the Projection View, top five important
features, and feature clusters respectively at different epochs.

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.01
0.02
0.03
0.04
0.05

0 2 4 6 8 10 12 14 16 18 20 22 24
0.00
0.02
0.04
0.06
0.08
0.10

Vanilla RNN

GRU

Figure 9: Compare the temporal importance of 100 NE PM25 across
different models.

domain expert explains that PM2.5 and PM10 are highly correlated
because they are always generated together. This shows that the
model GRU-Dense learns the information related to spatial locations.

7.2.2 Feature importance
We select the individual sequences of Fig. 5D1 and re-sort the fea-
tures by the importance. From the Feature Importance View, the top
important features are listed as Fig. 5C, and we observe that most of
them are related to feature SO2 and Wind Speed. Then, top features
change to SO2 and PM2.5 in later epochs. This observation shows
that feature importance may vary across different individual cases.
By default without selecting any sequences, the features are ranked
according to their average importance over of all the test cases. We
find that the Wind Speed is a major factor that influences the forecast
because the wind related features are ranked in front. The domain
experts point out that as there are very few factories in Hong Kong,
the local emissions are not a major reason that influences the forecast
result. Instead, the PM pollutants are easily transported from the
north, west, and east of mainland China, thus the wind plays an
important role in the forecast of PM2.5 and PM10.

During the exploration of different models, we notice that the
temporal pattern of the Feature Importance View is very different
across different models. Fig. 9 compares the feature importance for
vanilla RNN and GRU. With the selected feature of 100 NE PM25,
one observation is that the Feature Importance Views of model GRU
has a “tail” (Fig. 9) especially for the first three timestamps, which
is not observed in vanilla RNN. This solves one question raised by
the domain experts: is it necessary to use such complex models like
RNN to conduct air pollutant forecasting tasks? It is a controversial
question [3] as in some applications all important information is
included within within recent small time ranges [10] and do not
necessarily require complex machine learning models. By using
our system, we can find that the GRUs are able to memorize more

8

To appear in IEEE Transactions on Visualization and Computer Graphics

(A) winter (B) spring (C) summer (D) fall

winter

(A1) outliner

(C1) outliner

summe

Figure 10: Projection View across four seasons whose time range are
defined by local standards.

(A) (B)

(C1)

(D)

(C2)

(E1)

(E6)

(E3) (E2)

(E4)

(E5)

Cluster 1

Cluster 7

Cluster 10

(D1)

Figure 11: Case exploration for the PM2.5 forecast in winter. A, B)
Filter and highlight the individual cases in January 2018; C1, C2)
Two groups of individual cases are selected by brushing; D) The
top 10 importance features for the group selected in C1; E1, E2)
Representative cases of C1 and C2.

long-term information than vanilla RNNs. Since the air pollutant
and meteorology features (such as temperature) have a daily periodic
pattern, the input features around 24 hours ahead are also considered
relevant to the forecast. In addition, since the GRU model have
better performance compared with vanilla RNNs from Table 2. We
think the gate RNNs are applicable for the air pollutant forecast.

7.3 Case exploration

In Hong Kong, air quality always have seasonal patterns such as the
“large winter-summer contrasts in PM2.5 mass” due to the Asiatic
monsoon [18]. We conduct this case study to understand the model
behavior in different seasons.

7.3.1 Overview of the model behavior across seasons

In this case, we choose the GRU-Dense model and PM2.5 as the
target feature. We switch the time ranges to filter the cases in
winter, spring, summer, and fall. To highlight the selected cases, the
unfiltered cases are then colored in light grey as shown in Fig. 10.
We found that the fall and winter cases are clustered at the left-
bottom part (Fig. 10A and D). The cases in summer are located
at the right-top part (Fig. 10C). Despite some outliers exist in the
Projection View as shown in Fig. 10A1 and C1, the model is able

to capture the complex seasonal features in data based on above
observation.

7.3.2 Explore the model behavior in winter

Furthermore, we notice that several cases indicate that the target
location has a serious PM2.5 pollutant in winter. In the Projection
View, we first select the time ranges of January 2018 (Fig. 11A) to
highlight all the cases within this time range (Fig. 11B). We notice
there are many cases are colored in dark red, which indicates that
these cases suffer a heavy PM2.5 pollutant (Fig. 11C1). We select
these cases to explore their feature importance distributions and
rankings. The top ten important features are Wind Speed, PM2.5 and
PM10. The selected cases also appear in the Individual Views; and
we choose one representative case as shown in Fig. 11E1. In the
Cluster Importance Chart, cluster 1, 7, and 10 show great influence
in the forecast. These corresponding feature clusters are shown
in Fig. 11E3, which presents the clusters of PMx and Wind Speed
respectively. The above exploration further indicates that the most
important features in the forecasting are about PM2.5, PM10, and
Wind Speed. Moreover, by hovering on the feature “30 NE Wind”
in feature importance view(Fig. 11D1), the corresponding feature is
highlighted in the temporal trend view as Fig. 11E1 shown, which
illustrates a weak wind speed.

The domain experts state: “During winter, strong radiative cool-
ing over the continent creates a high-pressure anticyclone that drives
cold, dry polar air from the continent into the surrounding oceanic
areas, resulting in weak to moderate northeasterly winds or strong
northerly winds” [18, 21]. The weak to moderate wind is able to
bring the air pollutant from Pearl River Delta region in China, which
is a highly populated region and has a lot of heavy industry [4]. Thus,
the major factors that mostly influence Hong Kong’s air quality in
winter are the air pollutants and the wind. Specifically, the PM2.5 and
PM10 from the north and east mostly affects the prediction results.

We are also interested in comparing how the model generates pre-
diction for the high-pollutant and low-pollutant cases in the winter.
We select individual cases with low PM2.5 from the Projection View
as Fig. 11C2 shows, and the these cases appear in the Individual
View. By observing the representative case (Fig. 11E2), we find only
cluster 7 is very important at the last timestamp in the Cluster Impor-
tance Chart (Fig. 11E4), which indicates nearby PM2.5 and PM10.
Both the Top Feature List (Fig. 11E5) and the Cluster Importance
Chart show that the features of recent time steps are very important
for the forecast, which is different from the heavy pollution cases
(Fig. 11E6). We infer that for the low air pollutant cases, only recent
important features are leveraged by the model.

8 DISCUSSION AND CONCLUSION

In this paper, we present MultiRNNExplorer, a visual analytic sys-
tem for understanding RNN models for high-dimensional time-series
forecasting. Specifically, we use air pollutant forecasting as the tar-
get application. To understand the the model mechanism from a
global perspective, we propose a technique to estimate the hidden
units’ response to an individual feature by measuring how differ-
ent feature selections affect the hidden units’ output distribution.
From a finer granularity, we further use the gradient-based method
to measure the local feature importance for each sequence instance.
Based on these techniques, we design a visual analytic system which
enables the users to explore and reason about the model behavior
from different perspectives. Our evaluation includes three case stud-
ies that demonstrate the effectiveness of the proposed system for
comprehensive analysis of RNNs. Meanwhile, there are some issues
need to be discussed:

Scalability. Several views may suffer scalability issues when
the number of cases increase. In Projection View, thousands of
individual cases need to be visualized and cause serious visual clutter
due to the overlap of circles. In our case, more than 8000 points are

9

To appear in IEEE Transactions on Visualization and Computer Graphics

visualized. If data size keeps increasing, we may also apply other
advanced projection techniques [23, 31] for Projection View. In
addition, the context + focus technique can also be applied for users
to first obtain an overview of data then explore the regions of interests
to reduce visual clutter and mental burden. The Individual View
also has such a problem: it is easy for users to brush hundreds of
individual cases from Projection View and generate tens of clusters.
Due to the limited screen size, our current design allows 9 groups of
individual cases to be shown at the same time and uses the scroll bar
to enable the observation of more groups.

Generalization. Though we use air pollutant forecasting as ex-
ample in this paper, the proposed method can be extended to other
high-dimensional time-series forecasts with few changes. The cur-
rent feature glyph design supports encoding three spatial attributes
including direction, type, and distance and more design choices
can be explored based on different domain requirements. There are
also some future directions to improve MultiRNNExplorer. One
approach is improving the individual comparison. In our current
design, the individual comparison requires comparing data instances
side by side. Supporting interactions to highlight the differences
would be benefitial. We also consider applying our system on other
high-dimensional forecasting applications such as fraud detection.

ACKNOWLEDGMENTS

We thank all the reviewers for their constructive comments.
This research is supported in part by the HSBC 150th Anniver-
sary Charity Programme through the PRAISE-HK project (Grant
No.HKBF17RG0) and National Natural Science Foundation of
China (Grant No.61802388).

REFERENCES

[1] Sulfur dioxide (so2) pollution. https://www.epa.gov/

so2-pollution/sulfur-dioxide-basics#effects. Accessed:
2019-09-07.

[2] R. Andrews, J. Diederich, and A. B. Tickle. Survey and critique of
techniques for extracting rules from trained artificial neural networks.
Knowledge-based Systems, 8(6):373–389, 1995.

[3] J. Brownlee. Long Short-term Memory Networks with Python: Develop
Sequence Prediction Models with Deep Learning. Machine Learning
Mastery, 2017.

[4] J. Cao, S. Lee, K. Ho, X. Zhang, S. Zou, K. Fung, J. C. Chow, and J. G.
Watson. Characteristics of carbonaceous aerosol in pearl river delta
region, china during 2001 winter period. Atmospheric Environment,
37(11):1451–1460, 2003.

[5] Y. Chen, Q. Cheng, Y. Cheng, H. Yang, and H. Yu. Applications
of recurrent neural networks in environmental factor forecasting: A
review. Neural Computation, 30(11):2855–2881, 2018.

[6] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using
rnn encoder-decoder for statistical machine translation. arXiv preprint
arXiv:1406.1078, 2014.

[7] M. Craven and J. W. Shavlik. Extracting tree-structured representations
of trained networks. In Advances in Neural Information Processing
Systems, pp. 24–30, 1996.

[8] I. S. Dhillon. Co-clustering documents and words using bipartite spec-
tral graph partitioning. In Proceedings of the seventh ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
pp. 269–274. ACM, 2001.

[9] J. H. Friedman. Greedy function approximation: a gradient boosting
machine. Annals of Statistics, pp. 1189–1232, 2001.

[10] F. A. Gers, D. Eck, and J. Schmidhuber. Applying lstm to time series
predictable through time-window approaches. In Neural Nets WIRN
Vietri-01, pp. 193–200. Springer, 2002.

[11] S. Hochreiter. Untersuchungen zu dynamischen neuronalen netzen.
Diploma, Technische Universität München, 91(1), 1991.

[12] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[13] A. Karpathy, J. Johnson, and L. Fei-Fei. Visualizing and understanding
recurrent networks. arXiv preprint arXiv:1506.02078, 2015.

[14] B. C. Kwon, M.-J. Choi, J. T. Kim, E. Choi, Y. B. Kim, S. Kwon, J. Sun,
and J. Choo. Retainvis: Visual analytics with interpretable and inter-
active recurrent neural networks on electronic medical records. IEEE
Transactions on Visualization and Computer Graphics, 25(1):299–309,
2019.

[15] J. Li, X. Chen, E. Hovy, and D. Jurafsky. Visualizing and understanding
neural models in nlp. arXiv preprint arXiv:1506.01066, 2015.

[16] Z. C. Lipton. The doctor just won’t accept that! arXiv preprint
arXiv:1711.08037, 2017.

[17] M. Liu, J. Shi, Z. Li, C. Li, J. Zhu, and S. Liu. Towards better anal-
ysis of deep convolutional neural networks. IEEE Transactions on
Visualization and Computer Graphics, 23(1):91–100, 2017.

[18] P. K. Louie, J. G. Watson, J. C. Chow, A. Chen, D. W. Sin, and A. K.
Lau. Seasonal characteristics and regional transport of pm2. 5 in hong
kong. Atmospheric Environment, 39(9):1695–1710, 2005.

[19] S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model
predictions. In Advances in Neural Information Processing Systems,
pp. 4765–4774, 2017.

[20] Y. Ming, S. Cao, R. Zhang, Z. Li, Y. Chen, Y. Song, and H. Qu.
Understanding hidden memories of recurrent neural networks. In 2017
IEEE Conference on Visual Analytics Science and Technology (VAST),
pp. 13–24. IEEE, 2017.

[21] T. Murakami. Winter monsoonal surges over east and southeast asia1.
Journal of the Meteorological Society of Japan. Ser. II, 57(2):133–158,
1979.

[22] M. Oprea, M. Popescu, and S. F. Mihalache. A neural network based
model for pm 2.5 air pollutant forecasting. In 2016 20th International
Conference on System Theory, Control and Computing (ICSTCC), pp.
776–781. IEEE, 2016.

[23] N. Pezzotti, T. Höllt, B. Lelieveldt, E. Eisemann, and A. Vilanova.
Hierarchical stochastic neighbor embedding. In Computer Graphics
Forum, vol. 35, pp. 21–30. Wiley Online Library, 2016.

[24] N. Pezzotti, T. Höllt, J. Van Gemert, B. P. Lelieveldt, E. Eisemann, and
A. Vilanova. Deepeyes: Progressive visual analytics for designing deep
neural networks. IEEE Transactions on Visualization and Computer
Graphics, 24(1):98–108, 2018.

[25] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust you?:
Explaining the predictions of any classifier. In Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1135–1144. ACM, 2016.

[26] P. J. Rousseeuw. Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis. Journal of Computational and Applied
Mathematics, 20:53–65, 1987.

[27] M. Schuster and K. K. Paliwal. Bidirectional recurrent neural networks.
IEEE Transactions on Signal Processing, 45(11):2673–2681, 1997.

[28] H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer, H. Pfister, and A. M.
Rush. Seq2seq-vis: A visual debugging tool for sequence-to-sequence
models. IEEE Transactions on Visualization and Computer Graphics,
25(1):353–363, 2019.

[29] H. Strobelt, S. Gehrmann, H. Pfister, and A. M. Rush. Lstmvis: A
tool for visual analysis of hidden state dynamics in recurrent neural
networks. IEEE Transactions on Visualization and Computer Graphics,
24(1):667–676, 2018.

[30] Y. Sun, X. Wang, and X. Tang. Deeply learned face representations are
sparse, selective, and robust. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pp. 2892–2900, 2015.

[31] V. van Unen, T. Höllt, N. Pezzotti, N. Li, M. J. Reinders, E. Eisemann,
F. Koning, A. Vilanova, and B. P. Lelieveldt. Visual analysis of mass
cytometry data by hierarchical stochastic neighbour embedding reveals
rare cell types. Nature Communications, 8(1):1740, 2017.

[32] S. Xingjian, Z. Chen, H. Wang, D.-Y. Yeung, W.-K. Wong, and W.-c.
Woo. Convolutional lstm network: A machine learning approach for
precipitation nowcasting. In Advances in Neural Information Process-
ing Systems, pp. 802–810, 2015.

[33] Y. Zheng, X. Yi, M. Li, R. Li, Z. Shan, E. Chang, and T. Li. Forecasting
fine-grained air quality based on big data. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 2267–2276. ACM, 2015.

10

https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#effects
https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#effects

	Introduction
	Related Work
	Recurrent Neural Networks
	Machine Learning Interpretation

	Application and Models
	Application
	Data Description
	Models Description

	System design
	Task analysis
	System Overview

	Model Interpretation
	Relationships between Hidden States and Features
	Hidden State Distribution
	Relationship Strength Estimation

	Hidden Unit and Feature Clustering
	Local Feature Importance

	Visualization Design
	Cluster View
	Feature Importance View
	Projection View
	Individual View
	Interactions and Linkage

	Case study
	Changes Over Epochs
	Understand Model Behaviors
	Model Mechanism
	Feature importance

	Case exploration
	Overview of the model behavior across seasons
	Explore the model behavior in winter

	Discussion and Conclusion

