

SkyLens: Visual Analysis of Skyline on Multi-dimensional Data

Xun Zhao, Yanhong Wu, Weiwei Cui, Xinnan Du, Yuan Chen, Yong Wang, Dik-Lun Lee, and Huamin Qu

Background

Multi-criteria decision making

Employee recruitment

University selection

Car comparison

Background

 Suppose you are a college basketball coach, how do you recruit the best players?

PLAYER	TEAM	AGE	GP	W	L	MIN	OFFRTG	DEFRTG	NETRTG	AST%	AST/TO	AST RATIO	OREB%
AJ Hammons	DAL	24	22	4	18	7.4	102.2	102.8	-0.6	3.8	0.40	6.2	4.9
Aaron Brooks	IND	32	65	36	29	13.7	101.5	104.6	-3.0	21.6	1.89	24.6	2.2
Aaron Gordon	ORL	21	80	29	51	28.7	105.4	108.2	-2.8	9.7	1.69	12.5	5.4
Aaron Harrison	СНА	22	5	2	3	3.3	83.3	101.9	-18.6	37.5	0.00	38.1	0.0
Adreian Payne	MIN	26	18	5	13	7.5	102.6	101.8	0.8	8.9	0.88	9.0	6.9
Al Horford	BOS	31	68	46	22	32.3	110.7	105.8	5.0	23.9	2.93	25.7	4.9
Al Jefferson	IND	32	66	33	33	14.1	102.3	108.1	-5.8	11.4	1.73	9.5	8.6
Al-Farouq Aminu	POR	26	61	33	28	29.1	107.7	105.9	1.8	8.2	1.05	13.8	4.9
Alan Anderson	LAC	34	30	20	10	10.3	103.1	114.0	-10.8	5.2	1.57	10.5	1.1
Alan Williams	PHX	24	47	11	36	15.1	105.6	105.8	-0.3	4.9	0.62	6.1	13.8
Alec Burks	UTA	25	42	26	16	15.5	105.0	104.9	0.1	7.4	0.86	8.6	2.9
Alex Abrines	OKC	23	68	37	31	15.5	106.0	108.3	-2.3	5.5	1.21	9.2	1.9
Alex Len	PHX	24	77	21	56	20.3	99.4	110.5	-11.1	4.3	0.43	6.3	10.4

Copyright by NBA.com

Introduction – Skyline

Skyline algorithm: automatically select the skyline of the dataset

 In database, skyline algorithm is an important and extensively studied problem

Created by Jpldesigns from the dreamstime

Introduction – Skyline

• Skyline algorithm: automatically select the skyline of the dataset

Created by Jpldesigns from the dreamstime

Introduction – Skyline Definition

 Skyline: a set of superior points that are not dominated by other points in the dataset

- Dominance:
 - If *p* dominates *q*, then:
 - p is not worse than q in all attributes
 - p is at least better than q in one attribute

Skyline: a set of superior points that are not dominated by other

points in the dataset

Players	Block	Rebound
Alan	15	10
Bob	20	25

Bob dominates Alan (block & rebound)

Skyline: a set of superior points that are not dominated by other

points in the dataset

Players	Block	Rebound
Alan	15	10
Bob	20	25
Calvin	25	20

Calvin dominates Alan (block & rebound)

Skyline: a set of superior points that are not dominated by other

points in the dataset

Players	Block	Rebound
Alan	15	10
Bob	20	25
Calvin	25	20
Daniel	30	10

Daniel dominates Alan (block)

Skyline: a set of superior points that are not dominated by other

points in the dataset

Players	Block	Rebound
Alan	15	10
Bob	20	25
Calvin	25	20
Daniel	30	10

Points: Daniel > Calvin > Bob

Rebound: Bob > Calvin > Daniel

Skyline: a set of superior points that are not dominated by other

points in the dataset

Players	Block	Rebound
Alan	15	10
Bob	20	25
Calvin	25	20
Daniel	30	10

Skyline: Bob, Calvin, Daniel

Introduction – Challenges

Scalability

The size of skyline increases with the number of attributes

Interpretation

The reasons that make a point in skyline is unclear

Comparison

The strength and weakness of each skyline point is implicit

SkyLens – Visual Components

Projection View

Tabular View

Comparison View

SkyLens – Demo!

SkyLens – Video

SkyLens – Projection View

Projection View

Tabular View

Comparison View

Projection View: provide an overview of skyline (clusters and outliers)

Projection View

Methods: t-SNE projection and skyline glyphs

Normal mode: show the attribute value distribution of skyline

Attribute	Value
Attr. I	5
Attr II	3
Attr. III	7
Attr. IV	1
Attr. V	3
Attr. VI	1

- Normal mode: show the attribute value distribution of skyline
- Dominating score (superiority metric):
 - # of points dominated by this point

Higher

• Focus mode: highlight how other points differ from a focused one

Attribute	Point A	Point B
Attr. I	5	3
Attr II	3	4
Attr. III	7	6
Attr. IV	1	5
Attr. V	3	5
Attr. VI	1	3

Focus mode: highlight how other points differ from a focused one using color map

Attribute	Point A	Point B
Attr. I	5	3 (diff. = -2)
Attr II	3	4 (diff. = 1)
Attr. III	7	6 (diff. = -1)
Attr. IV	1	5 (diff. = 4)
Attr. V	3	5 (diff. = 2)
Attr. VI	1	3 (diff. = 2)

Lamar Odom has the largest dominating score (central circle color)

Switching to focus mode: three clusters can be found

Switching to focus mode: three clusters can be found

Point made-related **F**

Dwight Howard (defense player)

Lamar Odom

LeBron James (pointer player)

Switching to focus mode: three clusters can be found

Lamar Odom Dwight Howard (defense player)

LeBron James (point player)

Chris Paul (assist player)

SkyLens – Tabular View

Projection View

Tabular View

Comparison View

Tabular View: infer the underlying reasons that make a point in skyline

Methods: matrix representation & in-cell bar chart visualization

- Methods: matrix representation & in-cell bar chart visualization
 - Each row represents a skyline point

- Methods: matrix representation & in-cell bar chart visualization
 - Each row represents a skyline point
 - Each column represents an attribute

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences among skyline points

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences between skyline points

Each vertical bar represents a skyline point: current point (Point A) other points

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences between skyline points

32

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences between skyline points

Bar length: other skyline points' average value differences compared with point A

Tabular View – Case Studies

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences between skyline points

LeBron James:

High ranking on points & assist

Tabular View – Case Studies

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences between skyline points

LeBron James:

- High ranking in points & assist
- Better overall performance than most skyline points

Tabular View – Case Studies

- Table cell divergent bar chart visualization
 - Goal: summarize the overall differences between skyline points

Attr. II: points

Attr. III: assist

Attr. IV: block

LeBron James:

- High ranking in points & assist
- Better overall performance than most skyline points
- Dwight has an overall comparable performance with LeBron

Table cell interaction: expanding a row for detailed information

Table cell interaction: expanding a row for detailed information

Table cell interaction: expanding a row for detailed information

Each column is an extension of the corresponding vertical blue bar and represents the same skyline point

Table cell interaction: expanding a row for detailed information

Tabular View – Case Studies

Dwight Howard:

 No players has better performance than him in defense-related attributes

Tabular View – Case Studies

Dwight Howard:

- No players has better performance than him in defense-related attributes
- Many players outperform him in AST

SkyLens – Comparison View

Projection View

Tabular View

Comparison View

Comparison View: support a thorough comparison between skyline points

Comparison View

- Methods: radar charts & domination glyphs
 - Comparing attribute values
 - Examining dominating scores
 - Investigating dominated points

Goal: a thorough comparison on 2 ~ 5 skyline points

Comparison View

Radial layout for the radar charts & domination glyphs

Comparison View – Radar Chart

Comparison View – Domination Glyph

Comparison View – Domination Glyph

Comparison View – Domination Glyph

Comparison View – Domination Glyph Interaction

Hovering interaction: pop-up window showing the overlaid radar chart

Comparing Dwight, LeBron, and Chris in the perspective of domination relation

Comparing Dwight, LeBron, and Chris in the perspective of domination relation

Hovering over the points that are exclusively dominated by Chris against LeBron

Hovering over the points that are exclusively dominated by Chris against LeBron

Evaluation – Case Studies

- Two case studies using the NBA and Numbeo quality-of-life data
- NBA 2010 2011 regular season statistics
 - 452 players and 12 numerical attributes
- Numbeo quality-of-life data
 - 176 cities and 8 numerical attributes

Evaluation – User Study

- Qualitative user study
 - 12 participants recruited from the local university
 - 10 tasks covering all important aspects in skyline analysis
 - 19 questions related with SkyLens usage in a post-session interview

Future Work

- Include nominal attribute analysis
- Support data with uncertain values
- Track temporal changes of skyline

Microsoft **Research** 微软亚洲研究院 SkyLens: Visual Analysis of Skyline on Multi-dimensional Data

Xun Zhao

Contact: xzhaoag@ust.hk

Project page: http://zhaoxun.me/skylens

Agenda

- Background
- Introduction
- SkyLens
 - Projection View
 - Tabular View
 - Comparison View
- Evaluation
- Future Work

Comparison View – Radar charts

Attribute value: radar chart

Comparison View

Ranking on each attribute: radius of circle on axis

Comparison View

Dominating score: radius of dashed circles